Effect of Co-Ingestion of Collagen Peptides with Yogurt on Blood Absorption of Short Chain Hydroxyproline Peptides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of CP Test Foods
2.3. Analysis of Hyp-Containing Di- or Tripeptides in CP Test Foods
2.4. Human Study Design
2.5. Quantitation of Hyp and Hyp-Containing Di- or Tripeptides in Human Plasma
2.6. Statistical Analysis
3. Results
3.1. Detection of Di- and Tripeptides and Cyclic Peptides Derived from CP after Yogurt Fermentation
3.2. Detection of Food-Derived Hyp-Containing Peptides in Human Blood after Ingestion of CP with or without Yogurt Fermentation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schauss, A.G.; Stenehjem, J.; Park, J.; Endres, J.R.; Clewell, A.E. Effect of the Novel Low Molecular Weight Hydrolyzed Chicken Sternal Cartilage Extract, BioCell Collagen, on Improving Osteoarthritis-Related Symptoms: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Agric. Food Chem. 2012, 60, 4096–4101. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Sugihara, F.; Suzuki, K.; Inoue, N.; Venkateswarathirukumara, S. A double-blind, placebo-controlled, randomised, clinical study on the effectiveness of collagen peptide on osteoarthritis. J. Sci. Food Agric. 2014, 95, 702–707. [Google Scholar] [CrossRef]
- Yamanaka, H.; Okada, S.; Sanada, H. A multicenter, randomized, controlled study of the use of nutritional supplements containing collagen peptides to facilitate the healing of pressure ulcers. J. Nutr. Intermed. Metab. 2017, 8, 51–59. [Google Scholar] [CrossRef]
- Sugihara, F.; Inoue, N.; Venkateswarathirukumara, S. Ingestion of bioactive collagen hydrolysates enhanced pressure ulcer healing in a randomized double-blind placebo-controlled clinical study. Sci. Rep. 2018, 8, 11403. [Google Scholar] [CrossRef] [Green Version]
- Zdzieblik, D.; Oesser, S.; Baumstark, M.W.; Gollhofer, A.; Koenig, D. Collagen peptide supplementation in combination with resistance training improves body composition and increases muscle strength in elderly sarcopenic men: A randomised controlled trial. Br. J. Nutr. 2015, 114, 1237–1245. [Google Scholar] [CrossRef] [Green Version]
- Iwai, K.; Hasegawa, T.; Taguchi, Y.; Morimatsu, F.; Sato, K.; Nakamura, Y.; Higashi, A.; Kido, Y.; Nakabo, Y.; Ohtsuki, K. Identification of Food-Derived Collagen Peptides in Human Blood after Oral Ingestion of Gelatin Hydrolysates. J. Agric. Food Chem. 2005, 53, 6531–6536. [Google Scholar] [CrossRef]
- Ohara, H.; Matsumoto, H.; Ito, K.; Iwai, K.; Sato, K. Comparison of Quantity and Structures of Hydroxyproline-Containing Peptides in Human Blood after Oral Ingestion of Gelatin Hydrolysates from Different Sources. J. Agric. Food Chem. 2007, 55, 1532–1535. [Google Scholar] [CrossRef]
- Matsui, T.; Tamaya, K.; Seki, E.; Osajima, K.; Matsumoto, K.; Kawasaki, T. Absorption of Val–Tyr with in Vitro Angiotensin I-Converting Enzyme Inhibitory Activity into the Circulating Blood System of Mild Hypertensive Subjects. Boil. Pharm. Bull. 2002, 25, 1228–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foltz, M.; Meynen, E.E.; Bianco, V.; Van Platerink, C.; Koning, T.M.M.G.; Kloek, J. Angiotensin converting enzyme inhibitory peptides from a lactotripeptide-enriched milk beverage are absorbed intact into the circulation. J. Nutr. 2007, 137, 953–958. [Google Scholar] [CrossRef] [Green Version]
- Shigemura, Y.; Iwai, K.; Morimatsu, F.; Iwamoto, T.; Mori, T.; Oda, C.; Taira, T.; Park, E.Y.; Nakamura, Y.; Sato, K. Effect of Prolyl-hydroxyproline (Pro-Hyp), a Food-Derived Collagen Peptide in Human Blood, on Growth of Fibroblasts from Mouse Skin. J. Agric. Food Chem. 2009, 57, 444–449. [Google Scholar] [CrossRef]
- Ohara, H.; Ichikawa, S.; Matsumoto, H.; Akiyama, M.; Fujimoto, N.; Kobayashi, T.; Tajima, S. Collagen-derived dipeptide, proline-hydroxyproline, stimulates cell proliferation and hyaluronic acid synthesis in cultured human dermal fibroblasts. J. Dermatol. 2010, 37, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, S.; Mano, H.; Sampei, C.; Shimizu, J.; Wada, M. Chondroprotective effect of the bioactive peptide prolyl-hydroxyproline in mouse articular cartilage in vitro and in vivo. Osteoarthr. Cartil. 2009, 17, 1620–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shigemura, Y.; Iwasaki, Y.; Tateno, M.; Suzuki, A.; Kurokawa, M.; Sato, Y.; Sato, K. A Pilot Study for the Detection of Cyclic Prolyl-Hydroxyproline (Pro-Hyp) in Human Blood after Ingestion of Collagen Hydrolysate. Nutrients 2018, 10, 1356. [Google Scholar] [CrossRef] [Green Version]
- Taga, Y.; Iwasaki, Y.; Shigemura, Y.; Mizuno, K. Improved in Vivo Tracking of Orally Administered Collagen Hydrolysate Using Stable Isotope Labeling and LC–MS Techniques. J. Agric. Food Chem. 2019, 67, 4671–4678. [Google Scholar] [CrossRef]
- Adibi, S.A.; Soleimanpour, M.R. Functional Characterization of Dipeptide Transport System in Human Jejunum. J. Clin. Investig. 1974, 53, 1368–1374. [Google Scholar] [CrossRef] [Green Version]
- Adibi, S.A.; Morse, E.L.; Masilamani, S.S.; Amin, P.M. Evidence for two different modes of tripeptide disappearance in human intestine. Uptake by peptide carrier systems and hydrolysis by peptide hydrolases. J. Clin. Investig. 1975, 56, 1355–1363. [Google Scholar] [CrossRef] [Green Version]
- Walrand, S.; Chiotelli, E.; Noirt, F.; Mwewa, S.; Lassel, T. Consumption of a Functional Fermented Milk Containing Collagen Hydrolysate Improves the Concentration of Collagen-Specific Amino Acids in Plasma. J. Agric. Food Chem. 2008, 56, 7790–7795. [Google Scholar] [CrossRef]
- Griffiths, M.W.; Tellez, A.M. Lactobacillus helveticus: The proteolytic system. Front. Microbiol. 2013, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Taga, Y.; Kusubata, M.; Ogawa-Goto, K.; Hattori, S. Efficient Absorption of X-Hydroxyproline (Hyp)-Gly after Oral Administration of a Novel Gelatin Hydrolysate Prepared Using Ginger Protease. J. Agric. Food Chem. 2016, 64, 2962–2970. [Google Scholar] [CrossRef]
- Ohara, H.; Iida, H.; Ito, K.; Takeuchi, Y.; Nomura, Y. Effects of Pro-Hyp, a Collagen Hydrolysate-Derived Peptide, on Hyaluronic Acid Synthesis Using in Vitro Cultured Synovium Cells and Oral Ingestion of Collagen Hydrolysates in a Guinea Pig Model of Osteoarthritis. Biosci. Biotechnol. Biochem. 2010, 74, 2096–2099. [Google Scholar] [CrossRef] [Green Version]
- Trč, T.; Bohmova, J. Efficacy and tolerance of enzymatic hydrolysed collagen (EHC) vs. glucosamine sulphate (GS) in the treatment of knee osteoarthritis (KOA). Int. Orthop. 2010, 35, 341–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Fujioka, M.; Sugimoto, K.; Mu, G.; Ishimi, Y. Assessment of effectiveness of oral administration of collagen peptide on bone metabolism in growing and mature rats. J. Bone Miner. Metab. 2004, 22, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Taga, Y.; Kusubata, M.; Ogawa-Goto, K.; Hattori, S.; Funato, N. Collegen-derived X-Hyp-Gly type tripeptides promote differentiation of MC3T3-E1 pre osteoblasts. J. Funct. Foods 2018, 46, 456–462. [Google Scholar] [CrossRef]
- Aguirre, L.; Hebert, E.M.; Garro, M.S.; De Giori, G.S. Proteolytic activity of Lactobacillus strains on soybean proteins. LWT 2014, 59, 780–785. [Google Scholar] [CrossRef]
- Hafeez, Z.; Cakir-Kiefer, C.; Girardet, J.M.; Jardin, J.; Perrin, C.; Dary, A.; Miclo, L. Hydrolysis of milk-derived bioactive peptides by cell-associated extracellular peptidases of Streptococcus thermophiles. Appl. Microbiol. Biotechnol. 2013, 97, 9787–9799. [Google Scholar] [CrossRef]
- Atlan, D.; Laloi, P.; Portalier, R. X-Prolyl-Dipeptidyl Aminopeptidase of Lactobacillus delbrueckii subsp. bulgaricus: Characterization of the Enzyme and Isolation of Deficient Mutants. Appl. Environ. Microbiol. 1990, 56, 2174–2179. [Google Scholar] [CrossRef] [Green Version]
- Daniel, H.; Vohwinkel, M.; Rehner, G. Effect of Casein and β-Casomorphins on Gastrointestinal Motility in Rats. J. Nutr. 1990, 120, 252–257. [Google Scholar] [CrossRef]
- Tomé, D.A.; Dumontier, A.M.; Hautefeuille, M.A.; Desjeux, J.F. Opiate activity and transepithelial passage of intact β-casomorphins in rabbit ileum. Am. J. Physiol. 1987, 253, 737–744. [Google Scholar] [CrossRef]
- Meisel, H.; Fitzgerald, R.J. Opioid peptides encrypted in intact milk protein sequences. Br. J. Nutr. 2000, 84, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Lacroix, I.M.E.; Chen, X.-M.; Kitts, D.D.; Li-Chan, E.C. Investigation into the bioavailability of milk protein-derived peptides with dipeptidyl-peptidase IV inhibitory activity using Caco-2 cell monolayers. Food Funct. 2017, 8, 701–709. [Google Scholar] [CrossRef] [Green Version]
- Takeda, J.; Park, H.-Y.; Kunitake, Y.; Yoshiura, K.; Matsui, T. Theaflavins, dimeric catechins, inhibit peptide transport across Caco-2 cell monolayers via down-regulation of AMP-activated protein kinase-mediated peptide transporter PEPT1. Food Chem. 2013, 138, 2140–2145. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-Y.; Kunitake, Y.; Hirasaki, N.; Tanaka, M.; Matsui, T. Theaflavins enhance intestinal barrier of Caco-2 Cell monolayers through the expression of AMP-activated protein kinase-mediated Occludin, Claudin-1, and ZO-1. Biosci. Biotechnol. Biochem. 2014, 79, 130–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Food | Milk (g) | Yogurt (g) | Water (g) | Collagen Peptide (CP, g) | Incubation |
---|---|---|---|---|---|
Yogurt-fermented CP | 45 | 5 | 0 | 10 | ◯ |
CP in yogurt | 0 | 50 | 0 | 10 | × |
CP in water | 0 | 0 | 200 | 10 | × |
Free and Peptide Form of Hyp | Cmax (nmol/mL) | AUC (nmol/h·mL) | ||||
---|---|---|---|---|---|---|
Yogurt-Fermented CP | CP in Yogurt | CP in Water | Yogurt-Fermented CP | CP in Yogurt | CP in Water | |
Hyp | 68.15 ± 8.37 | 78.13 ± 19.39 | 61.80 ± 9.31 | 55.00 ± 6.82 | 51.54 ± 12.41 | 48.68 ± 8.95 |
Ala-Hyp | 1.12 ± 0.29 | 1.60 ± 0.19 ** | 0.90 ± 0.36 | 0.69 ± 0.12 | 0.75 ± 0.12 * | 0.56 ± 0.08 |
Glu-Hyp | 1.06 ± 0.21 | 1.22 ± 0.44 | 0.98 ± 0.25 | 0.78 ± 0.10 | 0.81 ± 0.22 | 0.63 ± 0.21 |
Ile-Hyp | 1.31 ± 0.32 | 1.42 ± 0.23 | 0.98 ± 0.26 | 0.52 ± 0.10 | 0.51 ± 0.85 | 0.42 ± 0.07 |
Leu-Hyp | 2.88 ± 0.87 | 3.30 ± 0.67 | 2.35 ± 0.76 | 1.03 ± 0.27 | 1.09 ± 0.23 | 0.92 ± 0.24 |
Phe-Hyp | 0.93 ± 0.15 * | 1.01 ± 0.13 ** | 0.71 ± 0.08 | 0.37 ± 0.06 | 0.38 ± 0.04 | 0.32 ± 0.07 |
Pro-Hyp | 15.53 ± 2.96 | 20.86 ± 7.70 | 16.36 ± 2.43 | 10.75 ± 1.45 | 12.47 ± 4.31 | 11.06 ± 3.10 |
Ser-Hyp | 0.84 ± 0.23 | 1.02 ± 0.22 | 0.76 ± 0.02 | 0.57 ± 0.08 | 0.58 ± 0.11 | 0.51 ± 0.12 |
Hyp-Gly | 1.77 ± 0.40 | 2.28 ± 0.59 | 1.56 ± 0.35 | 0.88 ± 0.16 | 1.01 ± 0.25 | 0.83 ± 0.09 |
Gly-Pro-Hyp | 0.27 ± 0.14 | 0.39 ± 0.11 | 0.24 ± 0.14 | 0.18 ± 0.07 | 0.20 ± 0.06 | 0.14 ± 0.06 |
Ala-Hyp-Gly | 1.29 ± 0.55 | 1.84 ± 0.31 * | 0.90 ± 0.35 | 0.52 ± 0.18 | 0.62 ± 0.11 * | 0.40 ± 0.04 |
Glu-Hyp-Gly | 0.82 ± 0.30 | 1.14 ± 0.32 | 0.84 ± 0.45 | 0.50 ± 0.12 | 0.58 ± 0.13 | 0.47 ± 0.24 |
Leu-Hyp-Gly | 0.11 ± 0.05 | 0.14 ± 0.09 * | 0.04 ± 0.01 | 0.04 ± 0.01 | 0.04 ± 0.02 | 0.02 ± 0.01 |
Phe-Hyp-Gly | 0.025 ± 0.011 | 0.032 ± 0.020 | 0.011 ± 0.005 | 0.01 ± 0.003 | 0.01 ± 0.01 | 0.01 ± 0.002 |
Pro-Hyp-Gly | 1.51 ± 0.41† | 2.26 ± 0.57 ** | 1.10 ± 0.40 | 0.64 ± 0.05† | 0.89 ± 0.18 ** | 0.54 ± 0.14 |
Ser-Hyp-Gly | 1.00 ± 0.48 | 1.99 ± 0.47 | 2.19 ± 1.79 | 0.62 ± 0.32 | 0.85 ± 0.12 | 0.81 ± 0.45 |
Cyclo(Ala-Hyp) | 0.13 ± 0.04 * | 0.15 ± 0.02 ** | 0.09 ± 0.02 | 0.09 ± 0.01 | 0.09 ± 0.02 | 0.08 ± 0.01 |
Cyclo(Glu-Hyp) | 0.046 ± 0.006 | 0.052 ± 0.007 * | 0.031 ± 0.012 | 0.04 ± 0.004 ** | 0.03 ± 0.004 * | 0.03 ± 0.01 |
Cyclo(Leu-Hyp) | 0.05 ± 0.52 | 0.06 ± 0.02 | 0.04 ± 0.00 | 0.03 ± 0.003 | 0.03 ± 0.01 | 0.03 ± 0.004 |
Cyclo(Phe-Hyp) | 0.030 ± 0.02 | 0.028 ± 0.002 | 0.027 ± 0.05 | 0.02 ± 0.002 | 0.02 ± 0.004 | 0.02 ± 0.002 |
Cyclo(Pro-Hyp) | 2.69 ± 0.69 * | 2.97 ± 0.97 ** | 0.09 ± 0.03 | 1.84 ± 0.28 ** | 1.76 ± 0.52 * | 1.00 ± 0.21 |
Cyclo(Ser-Hyp) | 0.11 ± 0.02 | 0.13 ± 0.03 | 0.11 ± 0.01 | 0.09 ± 0.01 * | 0.08 ± 0.01 | 0.07 ± 0.02 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwasaki, Y.; Taga, Y.; Suzuki, A.; Kurokawa, M.; Sato, Y.; Shigemura, Y. Effect of Co-Ingestion of Collagen Peptides with Yogurt on Blood Absorption of Short Chain Hydroxyproline Peptides. Appl. Sci. 2020, 10, 4066. https://doi.org/10.3390/app10124066
Iwasaki Y, Taga Y, Suzuki A, Kurokawa M, Sato Y, Shigemura Y. Effect of Co-Ingestion of Collagen Peptides with Yogurt on Blood Absorption of Short Chain Hydroxyproline Peptides. Applied Sciences. 2020; 10(12):4066. https://doi.org/10.3390/app10124066
Chicago/Turabian StyleIwasaki, Yu, Yuki Taga, Asahi Suzuki, Mihoko Kurokawa, Yoshio Sato, and Yasutaka Shigemura. 2020. "Effect of Co-Ingestion of Collagen Peptides with Yogurt on Blood Absorption of Short Chain Hydroxyproline Peptides" Applied Sciences 10, no. 12: 4066. https://doi.org/10.3390/app10124066
APA StyleIwasaki, Y., Taga, Y., Suzuki, A., Kurokawa, M., Sato, Y., & Shigemura, Y. (2020). Effect of Co-Ingestion of Collagen Peptides with Yogurt on Blood Absorption of Short Chain Hydroxyproline Peptides. Applied Sciences, 10(12), 4066. https://doi.org/10.3390/app10124066