Review of V2X–IoT Standards and Frameworks for ITS Applications
Abstract
:1. Introduction
2. Core ITS Standards
2.1. Standards for Dedicated Short-Range Communications (DSRC) Technology
- Reduce the number of accidents on the road;
- Regulate the flow of vehicles;
- Ensure the transmission of information for safe driving and to provide a variety of services.
2.2. Standards for 4G- and 5G-Based Cellular (C-V2X) Technology
2.3. Hybrid ITS Architecture
3. Commercial V2X Products
3.1. Commercial V2X Devices
3.2. Commercial V2X Chipsets
4. IoT Standards Applicability in ITS
5. Discussions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Commission. The Trans-European Transport Network: An EU that Delivers Investments in Smart, Sustainable and Safe Mobility for Jobs and Growth. April 2018. Available online: https://ec.europa.eu/transport/sites/transport/files/2018-eu-that-delivers.pdf (accessed on 17 May 2019).
- Nowacki, G. Development and Standardization of Intelligent Transport Systems. TransNav 2012, 6, 403–411. [Google Scholar]
- European Commission. 2018 Road Safety Statistics: What is Behind the Figures? April 2019. Available online: http://europa.eu/rapid/press-release_MEMO-19-1990_en.htm (accessed on 17 May 2019).
- European Commission. EU Strategic Action Plan on Road Safety. 17 May 2018. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar%3A0e8b694e-59b5-11e8-ab41-01aa75ed71a1.0003.02/DOC_2&format=PDF (accessed on 17 May 2019).
- European Commission. Memo-Road Safety Programme 2011–2020: Detailed Measures. 20 July 2010. Available online: http://europa.eu/rapid/press-release_MEMO-10-343_en.htm (accessed on 17 May 2019).
- European Commission. Road Safety: Data Show Improvements in 2017 but Renewed Efforts Are Needed for Further Substantial Progress. 10 April 2018. Available online: http://europa.eu/rapid/press-release_IP-18-2761_en.htm (accessed on 17 May 2019).
- European Commission. Sustainable Urban Mobility: Policy Context. March 2017. Available online: https://ec.europa.eu/transport/sites/transport/files/2017-sustainable-urban-mobility-policy-context.pdf (accessed on 17 May 2019).
- Baldessari, R. “Car-2-Car Communication Consortium Manifesto,” ITS Automotive Nord GmbH, Braunschweig, Germany, Technical Reports Version 1.1. 2007. Available online: https://www.car-2-car.org/fileadmin/documents/General_Documents/C2C-CC_Manifesto_Aug_2007.pdf (accessed on 17 May 2019).
- “Connected Vehicle Pilot Deployment Program,” U.S. Dept. Transp. (DOT), Washington, DC, USA, Fact Sheet. 2015. Available online: http://www.its.dot.gov/factsheets/pdf/JPO_CVPilot.pdf (accessed on 17 May 2019).
- Veniam, “Smart City Case Study: Creating the World’s Largest Network of Connected Vehicles for Smart Cities”. April 2016. Available online: http://worldwifiday.com/wp-content/uploads/2016/05/3.-PortoCaseStudy_Letter_2016-04-15.pdf (accessed on 17 May 2019).
- “Cisco Visual Networking Index: Forecast and Trends, 2017–2022,” White Paper. Cisco: San Jose, CA, USA, 27 February 2019. Available online: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf (accessed on 17 May 2019).
- Jurgo, M.; Navickas, R. Structure of all-digital frequency synthesiser for IoT and IoV applications. Electronics 2019, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Macaitis, V.; Navickas, R. Design of high frequency, low phase noise LC digitally controlled oscillator for 5G intelligent transport systems. Electronics 2019, 8, 72. [Google Scholar] [CrossRef] [Green Version]
- Macaitis, V.; Barzdenas, V.; Navickas, R. Design of 4.48–5.89 GHz LC-VCO in 65 nm RF CMOS Technology. Elektron. Elektrotech. 2014, 20, 44–47. [Google Scholar] [CrossRef]
- Kladovščikov, L.; Navickas, R.; Kiela, K. Self-tuning system for multistandard active RC filters. Microelectron. J. 2019, 90, 260–266. [Google Scholar] [CrossRef]
- Kiela, K.; Navickas, R. A method for continuous tuning of MOSFET–RC filters with extended control range. J. Electr. Eng. 2016, 67, 449–453. [Google Scholar] [CrossRef] [Green Version]
- Jurgo, M.; Kiela, K.; Navickas, R. Design of low noise 10 GHz divide by 16…511 frequency divider. Elektron. Elektrotech. 2013, 19, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Jurgo, M.; Navickas, R. Design of gigahertz tuning range 5 GHz LC digitally controlled oscillator in 0.18 μm CMOS. J. Electr. Eng. 2016, 67, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Charlamov, J.; Navickas, R.; Baškys, A. Phase noise minimization in CMOS voltage controlled oscillators. Acta Physica Polonica A. In Proceedings of the 14th International Symposium on Ultrafast Phenomena in Semiconductors, Vilnius, Lithuania, 23–25 August 2010; Polish Academy of Sciences: Warszawa, Poland, 2011; Volume 119, pp. 234–236. [Google Scholar]
- Baškys, A.; Navickas, R.; Šimkevičius, Č. The Fast differential amplifier-based integrated circuit yield analysis technique. Acta Phys. Pol. A 2011, 119, 259–261. [Google Scholar] [CrossRef]
- Barzdėnas, V.; Navickas, R. Leakage current compensation for the 0.13 µm CMOS charge sensitive preamplifier. Elektron. Elektrotech. 2007, 7, 33–36. [Google Scholar]
- International Organization for Standardization. ISO/TC 204 Technical Committees, Intelligent Transport Systems. Available online: https://www.iso.org/committee/54706.html (accessed on 18 June 2020).
- Federal Communications Commission. FCC Proposes to Allocate Spectrum in 5.9 GHz Range for Intelligent Transportation Systems Uses. (Et Docket No. 98-95). 11 June 1998. Available online: https://transition.fcc.gov/Bureaus/Engineering_Technology/News_Releases/1998/nret8010.html (accessed on 18 June 2020).
- International Telecommunications Union, ITU-R M.1452-2 Recommendation. Millimetre Wave Vehicular Collision Avoidance Radars and Radiocommunication Systems for Intelligent Transport System Applications. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.1452-2-201205-I!!PDF-E.pdf (accessed on 18 June 2020).
- International Telecommunications Union, ITU-R M.1453-2 Recommendation. Intelligent Transport Systems-Dedicated Short Range Communications at 5.8 GHz. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.1453-2-200506-I!!PDF-E.pdf (accessed on 18 June 2020).
- Federal Communications Commission. FCC Allocates Spectrum in 5.9 GHz Range for Intelligent Transport Systems Uses. 21 October 1999. Available online: https://transition.fcc.gov/Bureaus/Engineering_Technology/News_Releases/1999/nret9006.html (accessed on 18 June 2020).
- IEEE Standard for Information Technology. Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks—Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Amendment 6: Wireless Access in Vehicular Environments. IEEE Std. 802.11p-2010. Available online: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5514475 (accessed on 18 June 2020).
- IEEE Standards Association. Standards Development Working Group. IEEE1609—Dedicated Short Range Communication Working Group. Available online: https://standards.ieee.org/develop/wg/1609.html (accessed on 18 June 2020).
- ASTM International. ASTM E2158-01. Standard Specification for Dedicated Short Range Communication (DSRC) Physical Layer Using Microwave in the 902 to 928 MHz Band (Withdrawn 2010). Available online: https://www.astm.org/Standards/E2158.htm (accessed on 18 June 2020).
- European Telecommunications Standards Institute. Intelligent Transport Systems (ITS); European Profile Standard for the Physical and Medium Access Control Layer of Intelligent Transport Systems Operating in the 5 GHz Frequency Band, ETSI ES 202 663 V1.1.0. 2010. Available online: http://www.etsi.org/deliver/etsi_es/202600_202699/202663/01.01.00_60/es_202663v010100p.pdf (accessed on 18 June 2020).
- European Telecommunications Standards Institute. Intelligent Transport Systems (ITS); Radiocommunications Equipment Operating in the 5.855 MHz to 5.925 MHz Frequency Band; Harmonized EN Covering the Essential Requirements of Article 3.2 of the R&TTE Directive, ETSI EN 302 571 V1.2.1. 2013. Available online: http://www.etsi.org/deliver/etsi_en/302500_302599/302571/01.02.01_60/en_302571v010201p.pdf (accessed on 18 June 2020).
- European Committee for Standardization. Standard: CEN-EN 12253. Road Transport and Traffic Telematics—Dedicated Short-Range Communication-Physical Layer Using Microwave at 5.8 GHz, EN 12253:2004. 2004. Available online: https://standards.globalspec.com/std/453636/cen-en-12253 (accessed on 18 June 2020).
- Association of Radio Industries and Businesses. Dedicated Shord Range Communication for Transport Information and Control Systems, ARIB Standard, ARIB STD-T55 Version 1.0. Available online: https://www.arib.or.jp/english/html/overview/doc/5-STD-T55v1_0-E.pdf (accessed on 18 June 2020).
- Association of Radio Industries and Businesses. Dedicated Short Range Communication System, ARIB Standard, ARIB STD-T75, Version 1.0. Available online: https://www.arib.or.jp/english/html/overview/doc/5-STD-T75v1_0-E2.pdf (accessed on 18 June 2020).
- Association of Radio Industries and Businesses. 700 MHz Band Intelligent Transport Systems, ARIB Standard, ARIB STD-T109 Version 1.3. Available online: https://www.arib.or.jp/english/html/overview/doc/5-STD-T109v1_3-E1.pdf (accessed on 18 June 2020).
- Lin, C.S.; Chen, B.C.; Lin, J.C. Field Test and Performance Improvement in IEEE 802. 11p V2R/R2V Environments. In Proceedings of the 2010 IEEE International Conference on Communications Workshops, Cape Town, South Africa, 23–27 May 2010; pp. 1–5. [Google Scholar]
- Cailean, A.; Cagneau, B.; Chassagne, L.; Popa, V.; Dimian, M. A survey on the usage of DSRC and VLC in communication-based vehicle safety applications. In Proceedings of the 2014 IEEE 21st Symposium on Communications and Vehicular Technology in the Benelux (SCVT), Delft, The Netherlands, 10 November 2014. [Google Scholar]
- Qualcomm Technologies. Introduction to Cellular V2X. Available online: https://www.qualcomm.com/media/documents/files/introduction-to-c-v2x.pdf (accessed on 8 June 2020).
- Wang, J.; Shao, Y.; Ge, Y.; Yu, R. A survey of vehicle to everything (v2x) testing. Sensors 2019, 19, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) Radio Transmission and Reception (Release 15), Tech. Specification Group Radio Access Network (TSG RAN), 3GPP TS 36.101. 2019. Available online: http://www.3gpp.org/ftp//Specs/archive/36_series/36.101/36101-f80.zip (accessed on 26 November 2019).
- Service Requirements for V2X Services (Release 15), Tech. Specification Group Service & Systems Aspects (TSG SA), 3GPP TS 22.185. 2018. Available online: http://www.3gpp.org/ftp//Specs/archive/22_series/22.185/22185-f00.zip (accessed on 27 November 2019).
- Study on LTE Support for Vehicle to Everything (V2X) Services (Release 14), Tech. Specification Group Service & Systems Aspects (TSG SA), 3GPP TR 22.885. 2015. Available online: http://www.3gpp.org/ftp/Specs/archive/22_series/22.885/22885-e00.zip (accessed on 9 December 2019).
- User Equipment (UE) Radio Transmission and Reception; Part 1: Range 1 Standalone (Release 16), Tech. Specification Group Radio Access Network (TSG RAN), 3GPP TR 38.101. 2019. Available online: http://www.3gpp.org/ftp//Specs/archive/38_series/38.101-1/38101-1-g10.zip (accessed on 9 December 2019).
- Study on NR Vehicle-to-Everything (V2X) (Release 16), Tech. Specification Group Radio Access Network (TSG RAN), 3GPP TR 38.885. 2019. Available online: http://www.3gpp.org/ftp//Specs/archive/38_series/38.885/38885-g00.zip (accessed on 24 November 2019).
- V2X Services Based on NR; User Equipment (UE) Radio Transmission and Reception (Release 16), Tech. Specification Group Radio Access Network (TSG RAN), 3GPP TR 38.886. 2019. Available online: http://ftp.3gpp.org//Specs/archive/38_series/38.886/38886-040.zip (accessed on 9 December 2019).
- Study on Enhancement of 3GPP Support for 5G V2X services (Release 16), Tech. Specification Group Service & Systems Aspects (TSG SA), 3GPP TR 22.886. 2018. Available online: http://www.3gpp.org/ftp//Specs/archive/22_series/22.886/22886-g20.zip (accessed on 9 December 2019).
- Abboud, K.; Omar, H.; Zhuang, W. Interworking of DSRC and Cellular Network Technologies for V2X Communications: A Survey. IEEE Trans. Veh. Technol. 2016, 65, 9457–9470. [Google Scholar] [CrossRef]
- Yaacoub, E.; Filali, F.; Abu-Dayya, A. QoE Enhancement of SVC Video Streaming Over Vehicular Networks Using Cooperative LTE/802.11p Communications. IEEE J. Sel. Top. Signal Process. 2015, 9, 37–49. [Google Scholar] [CrossRef]
- Cespedes, S.; Shen, X. On Achieving Seamless IP Communications in Heterogeneous Vehicular Networks. IEEE Trans. Intell. Transp. Syst. 2015, 16, 3223–3237. [Google Scholar] [CrossRef]
- Benslimane, A.; Taleb, T.; Sivaraj, R. Dynamic Clustering-Based Adaptive Mobile Gateway Management in Integrated VANET—3G Heterogeneous Wireless Networks. IEEE J. Sel. Areas Commun. 2011, 29, 559–570. [Google Scholar] [CrossRef]
- Sivaraj, R.; Gopalakrishna, A.; Chandra, M.; Balamuralidhar, P. QoS-enabled group communication in integrated VANET-LTE heterogeneous wireless networks. In Proceedings of the 2011 IEEE 7th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Wuhan, China, 10–12 October 2011. [Google Scholar]
- Ucar, S.; Ergen, S.; Ozkasap, O. Multihop-Cluster-Based IEEE 802.11p and LTE Hybrid Architecture for VANET Safety Message Dissemination. IEEE Trans. Veh. Technol. 2016, 65, 2621–2636. [Google Scholar] [CrossRef] [Green Version]
- Zhioua, G.; Tabbane, N.; Labiod, H.; Tabbane, S. A Fuzzy Multi-Metric QoS-Balancing Gateway Selection Algorithm in a Clustered VANET to LTE Advanced Hybrid Cellular Network. IEEE Trans. Veh. Technol. 2015, 64, 804–817. [Google Scholar] [CrossRef]
- Liu, B.; Jia, D.; Wang, J.; Lu, K.; Wu, L. Cloud-Assisted Safety Message Dissemination in VANET. IEEE Syst. J. 2015, 11, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Lequerica, I.; Ruiz, P.; Cabrera, V. Improvement of vehicular communications by using 3G capabilities to disseminate control information. IEEE Netw. 2010, 24, 32–38. [Google Scholar] [CrossRef]
- Bi, S.; Chen, C.; Du, R.; Guan, X. Proper Handover between VANET and Cellular Network Improves Internet Access. In Proceedings of the 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), Vancouver, BC, Canada, 14–17 September 2014. [Google Scholar]
- Cohda Wireless. MK5 OBU Specification. Available online: http://www.neard.ws/wp-content/uploads/2018/11/MK5_OBU_Specification.pdf (accessed on 2 January 2019).
- Cohda Wireless. MK5 RSU Specification. Available online: http://www.neard.ws/wp-content/uploads/2018/11/MK5_RSU_Specification.pdf (accessed on 2 January 2019).
- Arada Systems. LocoMate OBU. Available online: http://www.aradasystems.com/wp-content/uploads/2015/06/Arada_datasheet_obu_2.01_2015.pdf (accessed on 2 January 2019).
- Arada Systems. LocoMate RSU. Available online: http://www.aradasystems.com/wp-content/uploads/2015/05/LocoMate_RSU_Datasheet_v2.0_May2015.pdf (accessed on 2 January 2019).
- Arada Systems. LocoMate ME, Mobile DSRC for V2X Connectivity. Available online: http://www.aradasystems.com/wp-content/uploads/2014/03/LocoMate_OBU_Datasheet_v2.16-MEREV1.16.pdf (accessed on 2 January 2019).
- BlueTOAD. Spectra DSRC Roadside Unit. Available online: http://trafficcast.com/spectrarsu/assets/BlueTOAD_SpectraRSU-Cutsheet-April18.pdf (accessed on 2 December 2019).
- Commsignia. V2X Evaluation Kit. Available online: http://www.commsignia.com/hardware/#datasheet (accessed on 2 January 2019).
- Commsignia. TS-RS4 (DSRC & C-V2X Dual Mode) for Smart Intersections and Highways. Available online: https://shop.commsignia.com/index.php?route=product/product&path=62&product_id=57 (accessed on 2 December 2019).
- Commsignia. ITS-OB4 (DSRC & C-V2X Dual Mode)—Aftermarket Safety Device. Available online: https://shop.commsignia.com/index.php?route=product/product&path=61&product_id=54 (accessed on 2 December 2019).
- Unex. V2X On-Borad Unit, OBU-201 Specification. Available online: https://unex.com.tw/download/5795d321a45b0/36?token=Lge42wsFFlquZJl4LQ25jvVLrkc3tyoEzRomBE55 (accessed on 2 January 2019).
- Unex. V2X Roadside Unit, RSU-101 Specification. Available online: https://unex.com.tw/download/58ae830239608/56?token=Qpc6sJkF10CxPh6OrrtIGtSc5yXhVHt9NpiNL1BR (accessed on 2 January 2019).
- Unex. OBU-301E DSRC-V2X On-Board Unit. Available online: https://unex.com.tw/download/5bd033afd5147/71?token=HbS0Ze2sBJjM4bC1jYVjVjI6YlQTFaiwxsyERE9t (accessed on 2 December 2019).
- Norbit. FZ58058 Road Side Unit (RSU). Available online: https://norbit.com/media/PS-100003-10_Norbit_ITS_FZ58058_datasheet.pdf (accessed on 2 January 2019).
- Norbit. VTR850-R On-Board Unit (OBU). Available online: https://norbit.com/media/PS-130003-2_Norbit_ITS_VTR850-R_datasheet.pdf (accessed on 2 January 2019).
- Kapsch TrafficCom. Kapsch OBU-TS3306 On-Board Unit. Available online: https://www.kapsch.net/ktc/downloads/datasheets/in-vehicle/5-9/Kapsch-KTC-DS-OBU-TS3306.pdf?lang=ru-RU (accessed on 2 January 2019).
- Kapsch TrafficCom. Kapsch RIS-9160. V2X Roadside ITS Station. Available online: https://www.kapsch.net/us/ktc/downloads/datasheets/rf-field/5-9/KTC_DB_RIS-9160_EN_20170609_lowres.pdf?lang=en-US (accessed on 2 January 2019).
- Kapsch. RIS-9260 V2X Roadside ITS Station. Available online: https://connectedvehicles.kapsch.net/download/KapschRIS-9260datasheet.pdf (accessed on 2 December 2019).
- Huawei. LTE-V RSU5201 Product Description. Available online: https://carrier.huawei.com/~/media/CNBGV2/download/products/wireless-network/c-v2x/lte-v-rsu5201-product-description-en.pdf (accessed on 2 December 2019).
- Qualcomm. The Qualcomm® Snapdragon™ Automotive Development Platform. Available online: https://www.qualcomm.com/media/documents/files/snapdragon-automotive-development-platform-spec-sheet.pdf (accessed on 2 January 2019).
- Intrinsic. Snapdragon™ S820Am v2 Automotive Development Platform Based on the Snapdragon™ 820A Automotive Processor. Available online: https://www.intrinsyc.com/automotive-development-platforms/s820am-v2-automotive-development-platform (accessed on 2 January 2019).
- Qualcomm. Qualcomm 9150 C-V2X Chipset. Available online: https://whttps://www.qualcomm.com/invention/5g/cellular-v2x (accessed on 2 December 2019).
- Green Car Congress. ZTE C-V2X Module to Use Qualcomm 9150 C-V2X Chipset in Next-Gen Vehicles and Roadside Infrastructure. Available online: http://www.greencarcongress.com/2018/02/20180228-zte.html (accessed on 2 January 2019).
- Autotalks. V2X Chipset Products. Available online: https://www.auto-talks.com/product/ (accessed on 2 January 2019).
- NXP Semiconductors. NXP DSRC Safety Modem. Available online: https://www.nxp.com/products/wireless/dsrc-safety-modem:DSRC-MODEM (accessed on 2 January 2019).
- Arada Systems. Locomate OBU [miniPCI Platform], Multi-Role WAVE Platform for Dedicated Short Range Communication (DSRC). Available online: http://files.moonblink.com/Arada-Locomate-OBU.pdf (accessed on 2 January 2019).
- Atheros Communication. AR5414 Data Sheet. AR5414 Dual-Band, Multi-Mode MAC/BB/Radio for IEEE 802.11 a/b/g Wireless LAN. Available online: http://atoma.spb.ru/sites/default/files/documents/ar5414_data_sheet_05_04.pdf (accessed on 2 January 2019).
- Abunei, A.; Comsa, C.; Bogdan, I. Implementation of a Cost-effective V2X hardware and software platform. In Proceedings of the 2016 International Conference on Communications (COMM), Bucharest, Romania, 9–10 June 2016; pp. 367–370. [Google Scholar]
- Liu, Z.; Liu, Z.; Meng, Z.; Yang, X.; Pu, L.; Zhang, L. Implementation and performance measurement of a V2X communication system for vehicle and pedestrian safety. Int. J. Distrib. Sens. Netw. 2016, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mavromatis, I.; Tassi, A.; Piechocki, R.J.; Nix, A. Agile calibration process of full-stack simulation frameworks for V2X communications. In Proceedings of the 2017 IEEE Vehicular Networking Conference (VNC), Torino, Italy, 27–29 November 2017; pp. 89–96. [Google Scholar]
- Renesas. R-Car W2R Product Overview. Available online: https://www.renesas.com/eu/en/about/press-center/news/2015/09/20150929-r-car-w2r-specs-en.pdf.https://www.renesas.com/en-eu/solutions/automotive/products/rcar-w2r.html (accessed on 2 January 2019).
- Marvell. 88W8987xA Wi-Fi, Bluetooth 5 and 802.11p Combo Solutions for Vehicle-to-Everything (V2X) and In-Vehicle Infotainment (IVI). Available online: https://www.marvell.com/documents/pepdlwlnnttwitthagov (accessed on 2 January 2019).
- Redpine Signals. WaveCombo™ Module Overview. Available online: http://www.redpinesignals.com/Products/802.11p_V2X_Connectivity/802.11p_V2X_Module.php (accessed on 2 January 2019).
- Asahi Kasei Microdevices Corporation. Overview of 5.9 GHz RF Transceiver with Power Amplifier for ETC. Available online: https://www.akm.com/akm/en/product/datasheet1/?partno=AK1553 (accessed on 2 January 2019).
- Siow, E.; Tiropanis, T.; Hall, W. Analytics for the Internet of Things: A Survey. ACM Comput. Surv. 2018, 51, 1–36. [Google Scholar] [CrossRef] [Green Version]
- James, M.; Chui, M.; Bisson, P.; Woetzel, J.; Dobbs, R.; Bughin, J.; Aharon, D. The Internet of Things: Mapping the Value beyond the Hype; Technical Report; McKinsey Global Institute: New York, NY, USA, 2015; Available online: http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world (accessed on 18 June 2020).
- Aguzzi, S.; Bradshaw, D.; Canning, M.; Cansfield, M.; Carter, P.; Cattaneo, G.; Gusmeroli, S.; Micheletti, G.; Rotondi, D.; Stevens, R. Definition of a Research and Innovation Policy Leveraging Cloud Computing and IoT. A study for the European Commission DG Communications Networks, Content & Technology. Available online: http://ec.europa.eu/newsroom/dae/document.cfm?doc_id=9472 (accessed on 3 December 2019).
- International Telecommunication Union. Overview of the Internet of Things; Technical Report; International Telecommunication Union: Geneva, Switzerland, 2012; Available online: http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=11559 (accessed on 18 June 2020).
- Danner, J.; Wills, L.; Ruiz, E.M.; Lerner, L.W. Rapid Precedent-Aware Pedestrian and Car Classification on Constrained IoT Platforms. In Proceedings of the 14th ACM/IEEE Symposium on Embedded Systems for Real-Time Multimedia—ESTIMedia 16, Pittsburgh, PA, USA, 6–7 October 2016; pp. 29–36. [Google Scholar]
- He, W.; Yan, G.; Xu, L.D. Developing Vehicular Data Cloud Services in the IoT Environment. IEEE Trans. Ind. Inform. 2014, 10, 1587–1595. [Google Scholar] [CrossRef]
- Valerio, P. Top Wireless Standards for IoT Devices. IoT Times. 11 April 2018. Available online: https://iot.eetimes.com/top-wireless-standards-for-iot-devices/ (accessed on 3 December 2019).
- Selvarajah, K.; Tully, A.; Blythe, P. ZigBee for Intelligent Transport System Applications. In Proceedings of the IET Road Transport Information and Control Conference and the ITS United Kingdom Members Conference (RTIC 2008), Manchester, UK, 20–22 May 2008; pp. 1–7. [Google Scholar]
- Rhoades, B.B.; Conrad, J.M. A survey of alternate methods and implementations of an intelligent transportation system. In SoutheastCon 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–8. [Google Scholar]
- Fan, H. The Vehicle Positioning Algorithm of the ZigBee Technology. In Proceedings of the 2016 International Symposium on Computer, Consumer and Control (IS3C), Xi’an, China, 4–6 July 2016; pp. 911–914. [Google Scholar]
- Lei, Y.; Wang, T.; Wu, J. Vehicles relative positioning based on ZigBee and GPS technology. In Proceedings of the 2016 6th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 17–19 June 2016; pp. 59–62. [Google Scholar]
- LoRa Alliance™. Home Page. Available online: https://lora-alliance.org/ (accessed on 3 December 2019).
- Silva, J.; Rodrigues, J.; Alberti, A. LoRaWAN—A Low Power WAN Protocol for Internet of Things: A Review and Opportunities. In Proceedings of the 2017 2nd International Multidisciplinary Conference on Computer and Energy Science (SpliTech), Split, Croatia, 12–14 July 2018; pp. 1–6. [Google Scholar]
- LoRaWAN™ IoT Network Deployed Nationwide in South Korea by SK Telecom Covers 99 Percent of Population. Available online: https://www.semtech.com/company/press/LoRaWAN-IoT-Network-Deployed-Nationwide-in-South-Korea-by-SK-Telecom-Covers-99-Percent-of-Population (accessed on 3 December 2019).
- Evolution of LTE in Release 13. Available online: http://www.3gpp.org/news-events/3gpp-news/1628-rel13 (accessed on 3 December 2019).
- Standardization of NB-IOT Completed. Available online: http://www.3gpp.org/news-events/3gpp-news/1785-nb_iot_complete (accessed on 3 December 2019).
- Release 14. Available online: https://www.3gpp.org/release-14 (accessed on 3 December 2019).
- Release 15. Available online: https://www.3gpp.org/release-15 (accessed on 3 December 2019).
- LTE-M Logo GSMA. Available online: https://www.gsma.com/iot/resources/ltem-logo/ (accessed on 3 December 2019).
- LTE-M Deployment Guide, Gsma. Available online: https://www.gsma.com/iot/wp-content/uploads/2018/04/LTE-M_Deployment_Guide_v2_5Apr2018.pdf (accessed on 3 December 2019).
- Tang, T.; Dai, K.; Zhang, Y.; Zhao, H.; Jiang, H. Field test results analysis in urban rail transit train ground communication systems of integrated service using LTE-M. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; pp. 2017–2021. [Google Scholar]
- Huawei Introduces LTE-M Offering for Railways. Telecom Asia. Available online: https://www.telecomasia.net/content/huawei-introduces-lte-m-offering-railways (accessed on 3 December 2019).
- What Is the Difference in Data Throughput between LTE-M/NB-IoT and 3G or 4G? GSMA. Available online: https://www.gsma.com/iot/resources/what-is-the-difference-in-data-throughput-between-lte-m-nb-iot-and-3g-or-4g/ (accessed on 3 December 2019).
- Smart Parking, Huawei. Available online: https://www.huawei.com/minisite/iot/en/smart-parking.html (accessed on 3 December 2019).
- Smart Street Lamps, Huawei. Available online: https://www.huawei.com/minisite/iot/en/smart-lighting.html (accessed on 3 December 2019).
- FM36M1—Special NB-IoT and LTE CATM1 Tracker with High Gain GNSS and IoT/GSM Antennas, Internal Backup Battery, Teltonika. Available online: https://teltonika.lt/product/fm36m1/ (accessed on 3 December 2019).
- Vujić, D.S.; Dukić, M. Comparison of TDD LTE and IEEE 802.11af Deployment in TVWS Band. In Proceedings of the Sinteza 2017—International Scientific Conference on Information Technology and Data Related Research, Beograd, Serbia, 21 April 2017; pp. 357–363. [Google Scholar]
- Domazetovic, B.; Kocan, E.; Mihovska, A. Performance evaluation of IEEE 802.11ah systems. In Proceedings of the 2016 24th Telecommunications Forum (TELFOR), Belgrade, Serbia, 22–23 November 2016; pp. 1–4. [Google Scholar]
- Goulianos, A.A.; Abdullah, N.F.; Kong, D.; Mellios, E.; Berkovskyy, D.; Doufexi, A.; Nix, A. Evaluation of 802.11 and LTE for Automotive Applications. In Proceedings of the 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), Vancouver, BC, Canada, 14–17 September 2014; pp. 1–5. [Google Scholar]
C-V2X Operating Band | Uplink, MHz | Downlink, MHz | Interface | Maximum Bandwidth, MHz |
---|---|---|---|---|
47 | 5855–5925 | PC5 | 30 1 | |
3 | 1710–1785 | 1805–1880 | Uu | 20 |
5 | 824–849 | 869–894 | Uu | 20 |
7 | 2500–2570 | 2620–2690 | Uu | 20 |
8 | 880–915 | 925–960 | Uu | 10 |
20 | 832–862 | 791–821 | Uu | 20 |
28 | 703–748 | 758–803 | Uu | 20 |
34 | 2010–2025 | Uu | 15 | |
39 | 1880–1920 | Uu | 20 | |
41 | 2496–2690 | Uu | 20 | |
71 | 663–689 | 617–652 | Uu | 20 |
Source | Network Topology | Landscape | Use Case Scenario | Purpose |
---|---|---|---|---|
[48] | Hierarchical | Rural | V2X | Video messages |
[49] | Hierarchical | City | V2I | Internet |
[54] | Hierarchical | City | V2X | Safety messages |
[55] | Flat | City | V2V | Travel planning |
[56] | Flat | Rural | V2I | Internet |
Commercial V2X Devices | [57] Cohda Wireless MK5 OBU | [58] Cohda Wireless MK5 RSU | [59] LocoMate OBU | [60] LocoMate RSU | [61] LocoMate ME | [62] BlueTOAD Spectra | |
---|---|---|---|---|---|---|---|
Basic Parameters | |||||||
RSU/OBU/Mobile | OBU | RSU | OBU | RSU | Mobile | RSU | |
Supported V2X technologies | DSRC | DSRC | DSRC | DSRC | DSRC | DSRC | |
RF transceiver chipset | u-blox THEO-P1 | u-blox THEO-P1 | Atheros AR5414 | Atheros AR5414 | Atheros AR5414 | - | |
GNSS | Yes | Yes | Yes | Yes | Yes | - | |
Security | - | - | Software | Software | Software | Software, hardware | |
Baseband processor chipset | SAF5100 | SAF5100 | Atheros AR7100 | Atheros AR7100 | Atheros AR7100 | NXP i.MX6 | |
Operating system | Linux | Linux | Linux, SDK with C libraries | Linux, SDK with C libraries | Linux, SDK with C libraries, Android | - | |
External connectors | Ethernet, USB, CAN, Audio, microSD | Ethernet, USB, Serial Console | Ethernet, USB | Ethernet | - | Ethernet |
Commercial V2X Devices | [63] Commsignia V2X Evaluation Kit | [64] Commsignia ITS-RS4D | [65] Commsignia ITS-OB4-D | [66] Unex OBU-201 | [67] Unex RSU-101 | [68] Unex OBU-310E | |
---|---|---|---|---|---|---|---|
Basic Parameters | |||||||
RSU/OBU/Mobile | RSU/OBU | RSU | OBU | OBU | RSU | OBU | |
Supported V2X technologies | DSRC | DSRC, C-V2X | DSRC, C-V2X | DSRC | DSRC | DSRC | |
RF transceiver chipset | Autotalks ATK3100 | Qualcomm 9150 | Qualcomm 9150 | Autotalks ATK3100 | Autotalks ATK3100 | Autotalks PLUTON2 | |
GNSS | Yes | Yes | Yes | Yes | Yes | Yes | |
Security | Hardware | Software | Software | Hardware, Infineon SLE97 | Hardware, Infineon SLE97 | Hardware | |
Baseband processor chipset | Autotalks ATK4100 and ARM | NXP i.MX6 | NXP i.MX6 | Autotalks ATK4100 | Autotalks ATK4100 | Autotalks CRATON2 and ARM | |
Operating system | - | Linux/RTOS (V2X) | Linux/RTOS (V2X) | ThreadX OS | ThreadX OS | Linux | |
External connectors | Ethernet, CAN, GPIO, microSD | Ethernet, SIM, USB | Ethernet, USB, SIM, micro SD, HDMI, Audio | RS232, GPIO, CAN, Ethernet, Audio, microSD | Ethernet, CAN, GPIO, RS232 | Ethernet, RS232, CAN, USB |
Commercial V2X Devices | [69] Norbit FZ58058 | [70] Norbit VTR850 | [71] Kapsch TrafficCom OBU-TS3306 | [72] Kapsch TrafficCom RIS-9160 | [73] Kapsch RIS-9260 | [74] Huawei LTE-V RSU5201 | |
---|---|---|---|---|---|---|---|
Basic Parameters | |||||||
RSU/OBU/Mobile | RSU | OBU | OBU | RSU | RSU | RSU | |
Supported V2X technologies | DSRC | DSRC | DSRC | DSRC | DSRC, C-V2X | C-V2X | |
RF transceiver chipset | - | - | - | - | Qualcomm 9150 | - | |
GNSS | No | No | Yes | Yes | Yes | Yes | |
Security | - | - | Hardware | Hardware | Hardware | Software | |
Baseband processor chipset | - | - | - | - | x86 CPU | - | |
Operating system | - | - | - | Linux, SDK with C libraries | - | - | |
External connectors | Ethernet, RS485, RS232, USB | - | USB, CAN, microSD | Ethernet, GPIO | GPIO, microSD, USB | Ethernet, Optical, SIM |
Standard | Frequency, MHz | Range | Transfer Rate |
---|---|---|---|
Zigbee | 915, 868 | 10–100 m | 20–250 kb/s |
LoRaWAN | 169, 433, 868, 915 | 2–45 km | 3–50 kb/s |
LTE-M | 700–2100 | Global | 100–380 kb/s |
NB-IoT | 450–2100 | 1–10 km | 28–250 kb/s |
IEEE 802.11af (White-Fi) | 470–790, 54–698 | 1 km | 1.8–35.6 Mb/s |
IEEE 802.11ah (HaLow) | 863–868, 902–928 | 1 km | 0.15–347 Mb/s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiela, K.; Barzdenas, V.; Jurgo, M.; Macaitis, V.; Rafanavicius, J.; Vasjanov, A.; Kladovscikov, L.; Navickas, R. Review of V2X–IoT Standards and Frameworks for ITS Applications. Appl. Sci. 2020, 10, 4314. https://doi.org/10.3390/app10124314
Kiela K, Barzdenas V, Jurgo M, Macaitis V, Rafanavicius J, Vasjanov A, Kladovscikov L, Navickas R. Review of V2X–IoT Standards and Frameworks for ITS Applications. Applied Sciences. 2020; 10(12):4314. https://doi.org/10.3390/app10124314
Chicago/Turabian StyleKiela, Karolis, Vaidotas Barzdenas, Marijan Jurgo, Vytautas Macaitis, Justas Rafanavicius, Aleksandr Vasjanov, Leonid Kladovscikov, and Romualdas Navickas. 2020. "Review of V2X–IoT Standards and Frameworks for ITS Applications" Applied Sciences 10, no. 12: 4314. https://doi.org/10.3390/app10124314
APA StyleKiela, K., Barzdenas, V., Jurgo, M., Macaitis, V., Rafanavicius, J., Vasjanov, A., Kladovscikov, L., & Navickas, R. (2020). Review of V2X–IoT Standards and Frameworks for ITS Applications. Applied Sciences, 10(12), 4314. https://doi.org/10.3390/app10124314