A Tale of Grass and Trees: Characterizing Vegetation Change in Payne’s Creek National Park, Belize from 1975 to 2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate Data
2.3. Data and Image Analysis
2.3.1. Remotely Sensed Data
2.3.2. Other Data: Normalized Difference Vegetation Index (NDVI), Digital Elevation Model (DEM), and Soil Type
2.4. Land Cover Classification and Change
2.4.1. Land Cover Classes
2.4.2. Training Data
2.4.3. Support Vector Machine Classification
2.4.4. Change Detection
3. Results
3.1. Land Cover Classification and Change Trajectories
3.1.1. Classification Maps
3.1.2. Change Trajectories
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. METZ 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Chapin, F.S.; Matson, P.A.; Vitousek, P. Principles of Terrestrial Ecosystem Ecology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; ISBN 978-1-4419-9504-9. [Google Scholar]
- Lehmann, C.E.R.; Anderson, T.M.; Sankaran, M.; Higgins, S.I.; Archibald, S.; Hoffmann, W.A.; Hanan, N.P.; Williams, R.J.; Fensham, R.J.; Felfili, J.; et al. Savanna Vegetation-Fire-Climate Relationships Differ Among Continents. Science 2014, 343, 548–552. [Google Scholar] [CrossRef]
- Cole, M.M. The savannas. Prog. Phys. Geogr. Earth Environ. 1987, 11, 334–355. [Google Scholar] [CrossRef]
- Stevens, N.; Lehmann, C.E.R.; Murphy, B.P.; Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Chang. Biol. 2017, 23, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Murphy, B.P.; Bowman, D.M.J.S. What controls the distribution of tropical forest and savanna? Ecol. Lett. 2012, 15, 748–758. [Google Scholar] [CrossRef] [PubMed]
- Staver, A.C.; Archibald, S.; Levin, S.A. The Global Extent and Determinants of Savanna and Forest as Alternative Biome States. Science 2011, 334, 230–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Southworth, J.; Zhu, L.; Bunting, E.; Ryan, S.J.; Herrero, H.; Waylen, P.R.; Hill, M.J. Changes in vegetation persistence across global savanna landscapes, 1982–2010. J. Land Use Sci. 2016, 11, 7–32. [Google Scholar] [CrossRef]
- Tropical and subtropical grasslands, savannas and shrublands|Biomes|WWF. Available online: https://www.worldwildlife.org/biomes/tropical-and-subtropical-grasslands-savannas-and-shrublands (accessed on 1 May 2020).
- Ferreira, J.N.; Bustamante, M.M.d.C.; Davidson, E.A. Linking woody species diversity with plant available water at a landscape scale in a Brazilian savanna. J. Veg. Sci. 2009, 20, 826–835. [Google Scholar] [CrossRef]
- Dantas, V.d.L.; Batalha, M.A. Vegetation structure: Fine scale relationships with soil in a cerrado site. Flora - Morphol. Distrib. Funct. Ecol. Plants 2011, 206, 341–346. [Google Scholar] [CrossRef]
- Herrero, H.V.; Southworth, J.; Bunting, E. Utilizing Multiple Lines of Evidence to Determine Landscape Degradation within Protected Area Landscapes: A Case Study of Chobe National Park, Botswana from 1982 to 2011. Remote Sens. 2016, 8, 623. [Google Scholar] [CrossRef] [Green Version]
- Pennington, R.T.; Lehmann, C.E.R.; Rowland, L.M. Tropical savannas and dry forests. Curr. Biol. 2018, 28, R541–R545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Southworth, J.; Munroe, D.; Nagendra, H. Land cover change and landscape fragmentation—Comparing the utility of continuous and discrete analyses for a western Honduras region. Agric. Ecosyst. Environ. 2004, 101, 185–205. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.; Prentice Hall Press: Upper Saddle River, NJ, USA, 2015; ISBN 978-0-13-405816-0. [Google Scholar]
- Maximum Likelihood. Available online: https://www.harrisgeospatial.com/docs/MaximumLikelihood.html (accessed on 21 May 2020).
- Support Vector Machine. Available online: https://www.harrisgeospatial.com/docs/SupportVectorMachine.html (accessed on 15 June 2020).
- Decision Tree. Available online: https://www.harrisgeospatial.com/docs/DecisionTree.html (accessed on 15 June 2020).
- Herrero, H.V.; Southworth, J.; Bunting, E.; Kohlhaas, R.R.; Child, B. Integrating Surface-Based Temperature and Vegetation Abundance Estimates into Land Cover Classifications for Conservation Efforts in Savanna Landscapes. Sensors 2019, 19, 3456. [Google Scholar] [CrossRef] [Green Version]
- Vogel, M.; Strohbach, M. Monitoring of savanna degradation in Namibia using Landsat TM/ETM+ data. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; Volume 3, pp. III-931–III-934. [Google Scholar]
- Furley, P.A. The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados. Glob. Ecol. Biogeogr. 1999, 8, 223–241. [Google Scholar] [CrossRef]
- Mistry, J. Savannas. Prog. Phys. Geogr. Earth Environ. 2000, 24, 601–608. [Google Scholar] [CrossRef]
- Furley, P.A. Savannas: A Very Short Introduction; Oxford University Press: Oxford, UK, 2016; ISBN 978-0-19-871722-5. [Google Scholar]
- Biomes|Conserving Biomes|WWF. Available online: https://www.worldwildlife.org/biomes (accessed on 1 May 2020).
- Garbulsky, M.F.; Paruelo, J.M. Remote sensing of protected areas to derive baseline vegetation functioning characteristics. J. Veg. Sci. 2004, 15, 711–720. [Google Scholar] [CrossRef]
- Josefsson, T.; Hörnberg, G.; Östlund, L. Long-Term Human Impact and Vegetation Changes in a Boreal Forest Reserve: Implications for the Use of Protected Areas as Ecological References. Ecosystems 2009, 12, 1017–1036. [Google Scholar] [CrossRef]
- April Sahara, E.; Sarr, D.A.; Van Kirk, R.W.; Jules, E.S. Quantifying habitat loss: Assessing tree encroachment into a serpentine savanna using dendroecology and remote sensing. For. Ecol. Manag. 2015, 340, 9–21. [Google Scholar] [CrossRef]
- Stuart, N.; Barratt, T.; Place, C. Classifying the Neotropical savannas of Belize using remote sensing and ground survey. J. Biogeogr. 2006, 33, 476–490. [Google Scholar] [CrossRef]
- Climate Summary—National Meteorological Service of Belize. Available online: https://www.hydromet.gov.bz/climatology/climate-summary (accessed on 18 May 2020).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameron, I.; Stuart, N.; Goodwin, Z. Savanna Ecosystems Map of Belize 2011: Technical Report; Darwin Initiative Project 17022; University of Edinburgh: Edinburgh, Scotland, 2011; pp. 5–16. [Google Scholar]
- Goodwin, Z.A.; Lopez, G.N.; Stuart, N.; Bridgewater, S.G.M.; Haston, E.M.; Cameron, I.D.; Michelakis, D.; Ratter, J.A.; Furley, P.A.; Kay, E.; et al. A checklist of the vascular plants of the lowland savannas of Belize, Central America. Phytotaxa 2013, 101, 1–119. [Google Scholar] [CrossRef] [Green Version]
- Donoghue, S.; Furley, P.A.; Stuart, N.; Haggis, R.; Trevaskis, A.; Lopez, G. The nature and spatial variability of lowland savanna soils: Improving the resolution of soil properties to support land management policy. Soil Use Manag. 2019, 35, 547–560. [Google Scholar] [CrossRef]
- Myers, R.; O’Brien, J.; Morrison, S. Fire Management Overview of the Caribbean Pine (Pinus caribaea) Savannas of the Mosquitia, Honduras; The Nature Conservancy: Arlington, VA, USA, 2006; p. 6. [Google Scholar]
- Fire Management. Available online: http://tidebelize.org/fire-management/ (accessed on 17 May 2020).
- Meerman, J.; Sabido, W. Central American Ecosystems Map: Belize; Programme for Belize: Belize City, Belize, 2001. [Google Scholar]
- EarthExplorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 17 June 2020).
- Measuring Vegetation (NDVI & EVI). Available online: https://earthobservatory.nasa.gov/features/MeasuringVegetation (accessed on 18 May 2020).
- Bai, Z.G.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Proxy global assessment of land degradation. Soil Use Manag. 2008, 24, 223–234. [Google Scholar] [CrossRef]
- Selva Maya Consortium Soils of Belize. Available online: https://databasin.org/datasets/21a4f58393904edcbdb1ae031a4c6b68 (accessed on 11 May 2020).
- Cortes, C.; Vapnik, V. Support-vector networks. Mach Learn 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Burges, C.J.C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Paneque-Gálvez, J.; Mas, J.-F.; Moré, G.; Cristóbal, J.; Orta-Martínez, M.; Luz, A.C.; Guèze, M.; Macía, M.J.; Reyes-García, V. Enhanced land use/cover classification of heterogeneous tropical landscapes using support vector machines and textural homogeneity. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 372–383. [Google Scholar] [CrossRef]
- Silva, G.B.S.; Mello, M.P.; Shimabukuro, Y.E.; Rudorff, B.F.T.; de Castro Victoria, D. Multitemporal classification of natural vegetation cover in Brazilian Cerrado. In Proceedings of the 2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp), Trento, Italy, 12–14 July 2011; pp. 117–120. [Google Scholar]
- Mitchard, E.T.A.; Flintrop, C.M. Woody encroachment and forest degradation in sub-Saharan Africa’s woodlands and savannas 1982–2006. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120406. [Google Scholar] [CrossRef] [Green Version]
- Sankaran, M.; Hanan, N.P.; Scholes, R.J.; Ratnam, J.; Augustine, D.J.; Cade, B.S.; Gignoux, J.; Higgins, S.I.; Le Roux, X.; Ludwig, F.; et al. Determinants of woody cover in African savannas. Nature 2005, 438, 846–849. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Walsh, A.; Milne, D.J. Forest expansion and grassland contraction within a Eucalyptus savanna matrix between 1941 and 1994 at Litchfield National Park in the Australian monsoon tropics. Glob. Ecol. Biogeogr. 2001, 10, 535–548. [Google Scholar] [CrossRef]
- Tng, D.Y.P.; Murphy, B.P.; Weber, E.; Sanders, G.; Williamson, G.J.; Kemp, J.; Bowman, D.M.J.S. Humid tropical rain forest has expanded into eucalypt forest and savanna over the last 50 years. Ecol. Evol. 2012, 2, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.C.R.; Sternberg, L.; Haridasan, M.; Hoffmann, W.A.; Miralles-Wilhelm, F.; Franco, A.C. Expansion of gallery forests into central Brazilian savannas. Glob. Chang. Biol. 2008, 14, 2108–2118. [Google Scholar] [CrossRef]
- Report For: TIDE Payne’s Creek National Park Biodiversity Assessment; Wildtracks: Belize City, Belize, 2005; pp. 4–18.
- Hurricanes and Tropical Storms Affecting Belize since 1930. Available online: http://consejo.bz/weather/storms.html (accessed on 18 May 2020).
- Stoddart, D.R. Catastrophic Storm Effects on the British Honduras Reefs and Cays. Nature 1962, 196, 512–515. [Google Scholar] [CrossRef]
- Murray, M.R.; Zisman, S.A.; Furley, P.A.; Munro, D.M.; Gibson, J.; Ratter, J.; Bridgewater, S.; Minty, C.D.; Place, C.J. The mangroves of Belize: Part 1. distribution, composition and classification. For. Ecol. Manag. 2003, 174, 265–279. [Google Scholar] [CrossRef]
- Furley, P. Plant ecology, soil environments and dynamic change in tropical savannas. Prog. Phys. Geogr. Earth Environ. 1997, 21, 257–284. [Google Scholar] [CrossRef]
- Coughenour, M.B.; Ellis, J.E. Landscape and Climatic Control of Woody Vegetation in a Dry Tropical Ecosystem: Turkana District, Kenya. J. Biogeogr. 1993, 20, 383–398. [Google Scholar] [CrossRef]
- Reed, D.N.; Anderson, T.M.; Dempewolf, J.; Metzger, K.; Serneels, S. The spatial distribution of vegetation types in the Serengeti ecosystem: The influence of rainfall and topographic relief on vegetation patch characteristics. J. Biogeogr. 2009, 36, 770–782. [Google Scholar] [CrossRef]
Error Matrix | Forest | Grass | Water | Wetland | Cloud | Cloud Shadow | Total | Class Error Commission % | Class Error Omission % |
---|---|---|---|---|---|---|---|---|---|
1975 | |||||||||
Unclassified | 0 | 0 | 0 | 0 | n/a | n/a | 0 | ||
Forest | 6 | 0 | 0 | 0 | n/a | n/a | 6 | 0.0 | 0.0 |
Grass | 0 | 7 | 2 | 0 | n/a | n/a | 9 | 22.2 | 12.5 |
Water | 0 | 0 | 2 | 0 | n/a | n/a | 2 | 0.0 | 50.0 |
Wetland | 0 | 1 | 0 | 8 | n/a | n/a | 9 | 11.1 | 0.0 |
Total | 6 | 8 | 4 | 8 | n/a | n/a | 26 | ||
1993 | |||||||||
Unclassified | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Forest | 6 | 0 | 1 | 0 | 0 | 0 | 7 | 14.3 | 0.0 |
Grass | 0 | 8 | 0 | 0 | 0 | 0 | 8 | 0.0 | 0.0 |
Water | 0 | 0 | 3 | 0 | 0 | 0 | 3 | 0.0 | 25.0 |
Wetland | 0 | 0 | 0 | 8 | 0 | 0 | 8 | 0.0 | 0.0 |
Cloud | 0 | 0 | 0 | 0 | 3 | 0 | 3 | 0.0 | 0.0 |
Cloud Shadow | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 0.0 | 0.0 |
Total | 6 | 8 | 4 | 8 | 3 | 3 | 32 | ||
2011 | |||||||||
Unclassified | 0 | 0 | 0 | 0 | n/a | n/a | 0 | ||
Forest | 6 | 0 | 1 | 0 | n/a | n/a | 7 | 14.3 | 0.0 |
Grass | 0 | 8 | 0 | 0 | n/a | n/a | 8 | 0.0 | 0.0 |
Water | 0 | 0 | 3 | 0 | n/a | n/a | 3 | 0.0 | 25.0 |
Wetland | 0 | 0 | 0 | 8 | n/a | n/a | 8 | 0.0 | 0.0 |
Total | 6 | 8 | 4 | 8 | n/a | n/a | 26 | ||
2019 | |||||||||
Unclassified | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Forest | 6 | 0 | 0 | 0 | 0 | 0 | 6 | 0.0 | 0.0 |
Grass | 0 | 7 | 2 | 0 | 0 | 0 | 9 | 22.2 | 12.5 |
Water | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 0.0 | 50.0 |
Wetland | 0 | 1 | 0 | 8 | 2 | 0 | 11 | 27.3 | 0.0 |
Cloud | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 0.0 | 33.3 |
Cloud Shadow | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 0.0 | 0.0 |
Total | 6 | 8 | 4 | 8 | 6 | 4 | 36 | ||
1975 Kappa Coefficient: 0.8402 Overall Accuracy: 88.5%; 1993 Kappa Coefficient: 0.9612 Overall Accuracy: 96.9%; | |||||||||
2011 Kappa Coefficient: 0.9474 Overall Accuracy: 96.2%; 2019 Kappa Coefficient: 0.8289 Overall Accuracy: 86.1% |
Trajectory | 1975 | 1993 | 2011 | 2019 | Pixel Count | % Change |
---|---|---|---|---|---|---|
WWWW | W | W | W | W | 41296 | 24.4 |
WWWN | N | W | W | W | 3546 | 2.1 |
WWNW | W | N | W | W | 398 | 0.2 |
WWNN | N | N | W | W | 423 | 0.2 |
WNWW | W | W | N | W | 398 | 0.2 |
WNWN | N | W | N | W | 418 | 0.2 |
WNNW | W | N | N | W | 258 | 0.2 |
WNNN | N | N | N | W | 2134 | 1.3 |
NWWW | W | W | W | N | 2060 | 1.2 |
NWWN | N | W | W | N | 4231 | 2.5 |
NWNW | W | N | W | N | 181 | 0.1 |
NWNN | N | N | W | N | 1181 | 0.7 |
NNWW | W | W | N | N | 1172 | 0.7 |
NNWN | N | W | N | N | 3091 | 1.8 |
NNNW | W | N | N | N | 2988 | 1.8 |
NNNN | N | N | N | N | 105445 | 62.3 |
Total | 169220 | 100.0 |
Trajectory | SVM Classifier % Change | ||
---|---|---|---|
1975–1993 | 1993–2011 | 2011–2019 | |
Non-Woody to Woody | 6.6 | 1.3 | 1.9 |
No Change | 91.2 | 95.7 | 93.3 |
Woody to Non-Woody | 2.2 | 3.0 | 4.8 |
Total | 100.0 | 100.0 | 100.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blentlinger, L.; Herrero, H.V. A Tale of Grass and Trees: Characterizing Vegetation Change in Payne’s Creek National Park, Belize from 1975 to 2019. Appl. Sci. 2020, 10, 4356. https://doi.org/10.3390/app10124356
Blentlinger L, Herrero HV. A Tale of Grass and Trees: Characterizing Vegetation Change in Payne’s Creek National Park, Belize from 1975 to 2019. Applied Sciences. 2020; 10(12):4356. https://doi.org/10.3390/app10124356
Chicago/Turabian StyleBlentlinger, Luke, and Hannah V. Herrero. 2020. "A Tale of Grass and Trees: Characterizing Vegetation Change in Payne’s Creek National Park, Belize from 1975 to 2019" Applied Sciences 10, no. 12: 4356. https://doi.org/10.3390/app10124356
APA StyleBlentlinger, L., & Herrero, H. V. (2020). A Tale of Grass and Trees: Characterizing Vegetation Change in Payne’s Creek National Park, Belize from 1975 to 2019. Applied Sciences, 10(12), 4356. https://doi.org/10.3390/app10124356