Structural Correlation Based Method for Image Forgery Classification and Localization
Abstract
:1. Introduction
2. Related Works
3. Bag-of-Features and Hamming Embedding Based Image Retrieval
4. Image Forgery Clustering
Algorithm 1: Image forgery clustering |
5. Image Forgery Classification and Localization
6. Experimental Results
6.1. Datasets
6.1.1. MICC-600
6.1.2. GRIP
6.1.3. CASIA 2
6.2. Evaluation Metrics
6.2.1. Metrics for Image Retrieval
6.2.2. Metrics for Image Forgery Classification and Localization
6.3. Image Retrieval Results
6.4. Forgery Detection and Localization Results on MICC-600 Dataset
6.5. Forgery Detection and Localization Results on GRIP Dataset
6.6. Forgery Detection and Localization Results on CASIA 2 Dataset
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CMF | Copy-Move Forgery |
CNN | Convolutional Neural Network |
CMFL | Copy-Move Forgery Localization |
SIFT | Scale Invariant Feature Transform |
BOF | bag-of-features |
HE | Hamming Embedding |
mean average precision |
References
- Pham, N.T.; Lee, J.W.; Kwon, G.-R.; Park, C.-S. Hybrid Image-Retrieval Method for Image-Splicing Validation. Symmetry 2019, 11, 83. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Qi, X.; Sun, X.; Shi, Y.-Q. Quaternion pseudo-Zernike moments combining both of RGB information and depth information for color image splicing detection. J. Vis. Commun. Image Represent 2017, 49, 283–290. [Google Scholar] [CrossRef]
- He, Z.; Lu, W.; Sun, W.; Huang, J. Digital image splicing detection based on Markov features in DCT and DWT domain. Pattern Recognit. 2012, 45, 4292–4299. [Google Scholar] [CrossRef]
- Pham, N.T.; Lee, J.W.; Kwon, G.-R.; Park, C.-S. Efficient image splicing detection algorithm based on Markov features. Multimedia Tools Appl. 2018, 78, 12405–12419. [Google Scholar] [CrossRef]
- Vo, A.H.; Le, T.; Vo, M.T.; Le, T. A Novel Framework for Trash Classification Using Deep Transfer Learning. IEEE Access 2019, 7, 178631–178639. [Google Scholar] [CrossRef]
- Le, T.; Vo, M.T.; Kieu, T.; Hwang, E.; Rho, S.; Baik, S. Multiple Electric Energy Consumption Forecasting Using a Cluster-Based Strategy for Transfer Learning in Smart Building. Sensors 2020, 20, 2668. [Google Scholar] [CrossRef]
- Zampoglou, M.; Papadopoulos, S.; Kompatsiaris, Y.; Kompatsiaris, I. Large-scale evaluation of splicing localization algorithms for web images. Multimedia Tools Appl. 2016, 76, 4801–4834. [Google Scholar] [CrossRef]
- Bondi, L.; Lameri, S.; Güera, D.; Bestagini, P.; Delp, E.; Tubaro, S. Tampering Detection and Localization Through Clustering of Camera-Based CNN Features. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1855–1864. [Google Scholar]
- Shi, Z.; Shen, X.; Kang, H.; Lv, Y. Image Manipulation Detection and Localization Based on the Dual-Domain Convolutional Neural Networks. IEEE Access 2018, 6, 69472–69480. [Google Scholar] [CrossRef]
- Chen, B.; Qi, X.; Wang, Y.; Zheng, Y.; Shim, H.J.; Shi, Y.-Q. An Improved Splicing Localization Method by Fully Convolutional Networks. IEEE Access 2018, 6, 69472–76453. [Google Scholar] [CrossRef]
- Yao, H.; Wang, S.; Zhang, X.; Qin, C.; Wang, J. Detecting Image Splicing Based on Noise Level Inconsistency. Multimedia Tools Appl. 2017, 76, 12457–124797. [Google Scholar] [CrossRef]
- Mayer, O.; Stamm, M.C. Forensic Similarity for Digital Images. IEEE Trans. Inf. Forensics Secur. 2020, 15, 1331–1346. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.; Zhan, Y.; Kang, X.; Lin, X. Image splicing localization using PCA-based noise level estimation. Multimedia Tools Appl. 2017, 76, 4783–4799. [Google Scholar] [CrossRef]
- Zheng, Y.; Cao, Y.; Chang, C.-H. A PUF-Based Data-Device Hash for Tampered Image Detection and Source Camera Identification. IEEE Trans. Inf. Forensics Secur. 2020, 15, 620–634. [Google Scholar] [CrossRef]
- Matern, F.; Riess, C.; Stamminger, M. Gradient-Based Illumination Description for Image Forgery Detection. IEEE Trans. Inf. Forensics Secur. 2020, 15, 1303–13170. [Google Scholar] [CrossRef]
- Wang, P.; Liu, F.; Yang, C.; Luo, X. Blind forensics of image gamma transformation and its application in splicing detection. J. Vis. Commun. Image Represent. 2018, 55, 80–90. [Google Scholar] [CrossRef]
- Park, C.-S.; Kim, C.; Lee, J.; Kwon, G.-R. Rotation and scale invariant upsampled log-polar fourier descriptor for copy-move forgery detection. Multimedia Tools Appl. 2016, 75, 16577–16595. [Google Scholar] [CrossRef]
- Wu, Y.; Abd-Almageed, W.; Natarajan, P. BusterNet: Detecting Copy-Move Image Forgery with Source/Target Localization. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 October 2018; pp. 170–186. [Google Scholar]
- Park, C.-S.; Choeh, J.Y. Fast and robust copy-move forgery detection based on scale-space representation. Multimedia Tools Appl. 2017, 77, 16795–16811. [Google Scholar] [CrossRef]
- Chen, B.; Yu, M.; Su, Q.; Shim, H.J.; Shi, Y.-Q. Fractional Quaternion Zernike Moments for Robust Color Image Copy-Move Forgery Detection. IEEE Access 2018, 6, 56637–56646. [Google Scholar] [CrossRef]
- Zhong, J.-L.; Pun, C.-M. An End-to-End Dense-InceptionNet for Image Copy-Move Forgery Detection. IEEE Trans. Inf. Forensics Secur. 2020, 15, 2134–2146. [Google Scholar] [CrossRef]
- Wu, Y.; Abd-Almageed, W.; Natarajan, P. Image Copy-Move Forgery Detection via an End-to-End Deep Neural Network. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 1907–1915. [Google Scholar]
- Cozzolino, D.; Poggi, G.; Verdoliva, L. Copy-move forgery detection based on PatchMatch. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Beijing, China, 6–10 July 2013; pp. 5312–5316. [Google Scholar]
- Cozzolino, D.; Poggi, G.; Verdoliva, L. Efficient Dense-Field Copy–Move Forgery Detection. IEEE Trans. Inf. Forensics Secur. 2015, 10, 2284–2297. [Google Scholar] [CrossRef]
- Amerini, I.; Ballan, L.; Caldelli, R.; Del Bimbo, A.; Del Tongo, L.; Serra, G. Copy-move forgery detection and localization by means of robust clustering with J-Linkage. Signal Process. Image Commun. 2013, 28, 659–669. [Google Scholar] [CrossRef]
- Jin, G.; Wan, X. An improved method for SIFT-based copy–move forgery detection using non-maximum value suppression and optimized J-Linkage. Signal Process. Image Commun. 2017, 57, 113–125. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, J. Fast and Effective Image Copy-Move Forgery Detection via Hierarchical Feature Point Matching. IEEE Trans. Inf. Forensics Secur. 2019, 14, 1307–1322. [Google Scholar] [CrossRef]
- Bi, X.; Pun, C.-M. Fast copy-move forgery detection using local bidirectional coherency error refinement. Pattern Recognit. 2018, 81, 161–175. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Yang, B.; Sun, X. Segmentation-Based Image Copy-Move Forgery Detection Scheme. IEEE Trans. Inf. Forensics Secur. 2015, 10, 507–518. [Google Scholar]
- Zheng, J.; Liu, Y.; Ren, J.; Zhu, T.; Yan, Y.; Yang, H. Fusion of block and keypoints based approaches for effective copy-move image forgery detection. Multidimens. Syst. Signal Process. 2016, 27, 989–1005. [Google Scholar] [CrossRef] [Green Version]
- Pun, C.-M.; Yuan, X.; Bi, X.-L. Image Forgery Detection Using Adaptive Oversegmentation and Feature Point Matching. IEEE Trans. Inf. Forensics Secur. 2015, 10, 1705–1716. [Google Scholar]
- Chen, B.; Yu, M.; Su, Q.; Li, L. Fractional quaternion cosine transform and its application in color image copy-move forgery detection. Multimedia Tools Appl. 2018, 78, 8057–8073. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Manzo, M. Graph-Based Image Matching for Indoor Localization. Mach. Learn. Knowl. Extr. 2019, 1, 785–804. [Google Scholar] [CrossRef] [Green Version]
- Manzo, M.; Pellino, S. Bag of ARSRG Words (BoAW). Mach. Learn. Knowl. Extr. 2019, 1, 871–882. [Google Scholar] [CrossRef] [Green Version]
- Tolias, G.; Avrithis, Y.; Jégou, H. To Aggregate or Not to aggregate: Selective Match Kernels for Image Search. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Sydney, NSW, Australia, 1–8 December 2013; pp. 1401–1408. [Google Scholar]
- Arandjelović, R.; Zisserman, A. DisLocation: Scalable Descriptor Distinctiveness for Location Recognition. In Proceedings of the Asian Conference on Computer Vision (ACCV), Singapore, 1–5 November 2014; pp. 188–2044. [Google Scholar]
- Jegou, H.; Douze, M.; Schmid, C. Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search. In Proceedings of the European Conference on Computer Vision (ECCV), Marseille, France, 12–18 October 2008; pp. 304–317. [Google Scholar]
- Sattler, T.; Havlena, M.; Schindler, K.; Pollefeys, M. Large-Scale Location Recognition and the Geometric Burstiness Problem. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1582–1590. [Google Scholar]
- Jegou, H.; Douze, M.; Schmid, C. On the burstiness of visual elements. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June 2009; pp. 1169–1176. [Google Scholar]
- Robertson, S. Understanding inverse document frequency: On theoretical arguments for IDF. J. Doc. 2004, 60, 503–520. [Google Scholar] [CrossRef] [Green Version]
- Fischler, M.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Image Compression. In Digital Image Processing, 3rd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2008; p. 608. [Google Scholar]
- Dong, J.; Wang, Y.; Tan, T. CASIA Image Tampering Detection Evaluation Database. In Proceedings of the 2013 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), Beijing, China, 6–10 July 2013; pp. 422–426. [Google Scholar]
Case A | Case B | Case C | |
---|---|---|---|
MICC-600 | 87.6 | 98.3 | 98.3 |
GRIP | 100 | 100 | 100 |
CASIA 2 | 97.5 | 99.6 | 99.4 |
Li et al. [29] | 69.8 | 88.1 | 77.9 | 86 | 88 | 87 |
Jin et al. [26] | - | - | - | 90.2 | 93.7 | 91.9 |
Li et al. [27] | 97.5 | 86.2 | 91.5 | - | - | 91.8 |
Proposed method | 88.6 | 92.5 | 90.5 | 90.8 | 95.5 | 93.1 |
Chen et al. [20] | - | - | - | - | - | 95.33 |
Cozzolino et al. [24] | - | - | 94.61 | - | - | 94.06 |
Li et al. [27] | 100 | 100 | 100 | - | - | 94.66 |
Bi et al. [28] | - | - | 96.63 | - | - | 92.98 |
Chen et al. [32] | - | - | - | - | 95.77 | |
Proposed method | 96.3 | 98.8 | 97.5 | 96.2 | 97.4 | 96.8 |
Actual Class | ||||
---|---|---|---|---|
Authentic | Copy-Move | Splicing | ||
Predicted class | Authentic | 96.9 | 1.8 | 1.9 |
Copy-move | 1.0 | 91.5 | 4.4 | |
Splicing | 2.1 | 6.7 | 93.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, N.T.; Lee, J.-W.; Park, C.-S. Structural Correlation Based Method for Image Forgery Classification and Localization. Appl. Sci. 2020, 10, 4458. https://doi.org/10.3390/app10134458
Pham NT, Lee J-W, Park C-S. Structural Correlation Based Method for Image Forgery Classification and Localization. Applied Sciences. 2020; 10(13):4458. https://doi.org/10.3390/app10134458
Chicago/Turabian StylePham, Nam Thanh, Jong-Weon Lee, and Chun-Su Park. 2020. "Structural Correlation Based Method for Image Forgery Classification and Localization" Applied Sciences 10, no. 13: 4458. https://doi.org/10.3390/app10134458
APA StylePham, N. T., Lee, J. -W., & Park, C. -S. (2020). Structural Correlation Based Method for Image Forgery Classification and Localization. Applied Sciences, 10(13), 4458. https://doi.org/10.3390/app10134458