Semantic and Syntactic Interoperability for Agricultural Open-Data Platforms in the Context of IoT Using Crop-Specific Trait Ontologies
Abstract
:Featured Application
Abstract
1. Introduction
2. Related Works
3. The Proposed Data Integration Approach for Agricultural Open Data Platforms
3.1. Physical Layer (PL)
3.2. Processing and Storage Layer (PSL)
3.3. Data Decomposition Engine (DDE)
3.4. Data Cleansing Engine (DCE)
3.5. Object Modeling Engine (OME)
3.6. Data Storage Engine (DSE)
3.7. Semantic Interoperability Layer (SIL)
3.8. Web Services and Exportation (WSE)
4. Implementation of an Open Data Platform in Accordance with the Proposed Approach
4.1. Introducing Hazelnut Trait Ontology
4.2. Materials and Tools Used for the Development and Implementation of WSN and Open Data Platform Based on Proposed Approach
4.3. Providing Semantic Interoperability between IoT Devices and Open Data Platforms Using Agricultural Trait Ontologies
5. Evaluation of the Tools of Open Data Platform Used for Implementing the Proposed Approach
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Screenshots of the Open Data Platform for Semantic and Syntactic Interoperability
References
- Lindblom, J.; Lundström, C.; Ljung, M.; Jonsson, A. Promoting sustainable intensification in precision agriculture: Review of decision support systems development and strategies. Precision Agric. 2017, 18, 309–331. [Google Scholar] [CrossRef] [Green Version]
- Karim, F.; Karim, F. Monitoring system using web of things in precision agriculture. Procedia Comput. Sci. 2017, 110, 402–409. [Google Scholar] [CrossRef]
- Mazon-Olivo, B.; Hernández-Rojas, D.; Maza-Salinas, J.; Pan, A. Rules engine and complex event processor in the context of internet of things for precision agriculture. Comput. Electron. Agric. 2018, 154, 347–360. [Google Scholar] [CrossRef]
- Minbo, L.; Zhu, Z.; Guangyu, C. Information Service System of Agriculture IoT. Automatika 2013, 54, 415–426. [Google Scholar] [CrossRef] [Green Version]
- Muangprathub, J.; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. IoT and agriculture data analysis for smart farm. Comput. Electron. Agric. 2019, 156, 467–474. [Google Scholar] [CrossRef]
- Paraforos, D.S.; Vassiliadis, V.; Kortenbruck, D.; Stamkopoulos, K.; Ziogas, V.; Sapounas, A.A.; Griepentrog, H.W. Multi-level automation of farm management information systems. Comput. Electron. Agric. 2017, 142 Pt B, 504–514. [Google Scholar] [CrossRef]
- Aydin, Ş.; Aydin, M.N. A Sustainable Multi-layered Open Data Processing Model for Agriculture: IoT Based Case Study Using Semantic Web for Hazelnut Fields. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 309–319. [Google Scholar] [CrossRef]
- Nagib, A.M.; Hamza, H.S. SIGHTED: A Framework for Semantic Integration of Heterogeneous Sensor Data on the Internet of Things. Procedia Comput. Sci. 2016, 83, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Noy, N.F.; McGuinness, D. Ontology Development 101: A Guide to creating your first Ontology, Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics Technical Report SMI-2001-0880, March 2001. Available online: http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness-abstract.html (accessed on 20 March 2020).
- Cristani, M.; Cuel, R. A Survey on Ontology Creation Methodologies. J. Semant. Web Inform. Syst. 2005, 1, 48–68. [Google Scholar] [CrossRef] [Green Version]
- Daraio, C.; Lenzerini, M.; Leporelli, C.; Naggar, P.; Bonaccorsi, A.; Bartolucci, A. The advantages of an Ontology-Based Data Management approach: Openness, interoperability and data quality. Scientometrics 2016, 108, 441–455. [Google Scholar] [CrossRef]
- El Kaed, C.; Khan, I.; Van Den Berg, A.; Hossayni, H.; Saint-Marcel, C. SRE: Semantic Rules Engine for the Industrial Internet-Of-Things Gateways. IEEE Trans. Ind. Inform. 2018, 14, 715–724. [Google Scholar] [CrossRef] [Green Version]
- Atziori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- RFID Journal Webpage. Available online: https://www.rfidjournal.com/articles/view?4986 (accessed on 18 March 2020).
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Fut. Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef] [Green Version]
- Michael Shirer and Carrie MacGillivray. The Growth in Connected IoT Devices is Expected to Generate 79.4ZB of Data in 2025, According to a New IDC Forecast. Available online: https://www.idc.com/getdoc.jsp?containerId=prUS45213219 (accessed on 18 March 2020).
- Jabbar, S.; Ullah, F.; Khalid, S.; Khan, M.; Han, K. Semantic Interoperability in Heterogeneous IoT Infrastructure for Healthcare. Wirel. Commun. Mob. Comput. 2017, 2017, 9731806. [Google Scholar] [CrossRef]
- Shariat Zadeh, N.; Lundholm, T.; Lindberg, L.; Franzén Sivard, G. Integration of Digital Factory with Smart Factory Based on Internet of Things. Procedia CIRP 2016, 50, 512–517. [Google Scholar] [CrossRef]
- Spoladore, D.; Mahroo, A.; Trombetta, A.; Sacco, M. ComfOnt: A Semantic Framework for Indoor Comfort and Energy Saving in Smart Homes. Electronics 2019, 8, 1449. [Google Scholar] [CrossRef] [Green Version]
- Ullah, F.; Habib, M.A.; Farhan, M.; Khalid, S.; Durrani, M.Y.; Jabbar, S. Semantic interoperability for big-data in heterogeneous IoT infrastructure for healthcare. Sustain. Cities Soc. 2017, 34, 90–96. [Google Scholar] [CrossRef]
- Al-Osta, M.; Ahmed, B.; Abdelouahed, G. A Lightweight Semantic Web-based Approach for Data Annotation on IoT Gateways. Procedia Comput. Sci. 2017, 113, 186–193. [Google Scholar] [CrossRef]
- Elsaleh, T.; Bermudez-Edo, M.; Enshaeifar, S.; Acton, S.T.; Rezvani, R.; Barnaghi, P. IoT-Stream: A Lightweight Ontology for Internet of Things Data Streams. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Gruber, T.R. Toward principles for the design of ontologies used for knowledge sharing? Int. J. Human-Comput. Stud. 1995, 43, 907–928. [Google Scholar] [CrossRef]
- Noy, N.F.; Hafner, C.D. The State of the Art in Ontology Design a Survey and Comparative Review. AI Mag. 1997, 18, 53. [Google Scholar]
- Wang, W.; Tolk, A.; Wang, W. The Levels of Conceptual Interoperability Model: Applying Systems Engineering Principles to M&S. arXiv preprint 2019, arXiv:0908.0191. [Google Scholar] [CrossRef]
- Dobrev, P.; Kalaydjiev, O.; Angelova, G. From Conceptual Structures to Semantic Interoperability of Content. In Conceptual Structures: Knowledge Architectures for Smart Applications; ICCS 2007. Lecture Notes in Computer Science; Priss, U., Polovina, S., Hill, R., Eds.; Springer: Berlin, Heidelberg, 2007; Volume 4604. [Google Scholar]
- Susanna, P.-S.; Anu, P.; Eila, O.; Jarkko, K.; Antti, E. Situation-based and self-adaptive applications for the smart environment. J. Ambient Intell. Smart Environ. 2012, 4, 491–516. [Google Scholar]
- Noura, M.; Atiquzzaman, M.; Gaedke, M. Interoperability in Internet of Things: Taxonomies and Open Challenges. Mob. Netw. Appl. 2019, 24, 796–809. [Google Scholar] [CrossRef] [Green Version]
- Noura, M.; Atiquzzaman, M.; Gaedke, M. Interoperability in Internet of Things Infrastructure: Classification, Challenges, and Future Work. In IoT as a Service. IoTaaS 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Lin, Y.B., Deng, D.J., You, I., Lin, C.C., Eds.; Springer: Cham, Switzerland, 2018; Volume 246. [Google Scholar]
- Jayaraman, P.P.; Palmer, D.; Zaslavsky, A.; Georgakopoulos, D. Do-it-Yourself Digital Agriculture applications with semantically enhanced IoT platform. In Proceedings of the 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore, 7–9 April 2015; pp. 1–6. [Google Scholar]
- Ganzha, M.; Paprzycki, M.; Pawłowski, W.; Szmeja, P.; Wasielewska, K. Semantic interoperability in the Internet of Things: An overview from the INTER-IoT perspective. J. Netw. Comput. Appl. 2017, 81, 111–124. [Google Scholar] [CrossRef]
- Tayur, V.M.; Suchithra, R. A Comprehensive Ontology for Internet of Things (COIoT). In Proceedings of the 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP), Gangtok, India, 25 February 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Bajaj, G.; Agarwal, R.; Singh, P.; Georgantas, N.; Issarny, V. A study of existing Ontologies in the IoT-domain. arXiv 2017, arXiv:1707.00112. [Google Scholar]
- Avancha, S.; Patel, C.; Joshi, A. Ontology-driven adaptive sensor networks. In Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services MOBIQUITOUS, Boston, MA, USA, 22 August 2004; pp. 194–202. [Google Scholar]
- Matheus, C.J.; Tribble, D.; Kokar, M.M.; Ceruti, M.G.; McGirr, S.C. Towards a formal pedigree ontology for level-one sensor fusion. In Proceedings of the 10th International Command & Control Research and Technology Symposium, McLean, VA, USA, 13–16 June 2005. [Google Scholar]
- Russomanno, D.; Kothari, C.; Thomas, O. Building a Sensor Ontology: A Practical Approach Leveraging ISO and OGC Models. In Proceedings of The 2005 International Conference on Artificial Intelligence (IC-AI 2005), Las Vegas, NV, USA, June 2005; CSREA Press: Las Vegas, NV, USA, 2005; pp. 637–643. [Google Scholar]
- Eid, M.; Liscano, R.; El Saddik, A. A Novel Ontology for Sensor Networks Data. In Proceedings of the 2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, La Coruna, Spain, 12–14 July 2006; pp. 75–79. [Google Scholar] [CrossRef]
- Neuhaus, H.; Compton, M. The Semantic Sensor Network Ontology: A Generic Language to Describe Sensor Assets. In Proceedings of the Pre-Conference Workshop on Challenges in Geospatial Data Harmonisation (AGILE 2009), Hannover, Germany, 2 June 2009. [Google Scholar]
- Robin, A. OGC SWE Common Data Model Encoding Standard. Available online: http://portal.opengeospatial.org/files/?artifact_id=41157 (accessed on 22 March 2020).
- Sensor Model Language (SensorML). Available online: https://www.ogc.org/standards/sensorml (accessed on 22 March 2020).
- Compton, M.; Barnaghi, P.; Bermudez, L.; GarcíA-Castro, R.; Corcho, O.; Cox, S.; Graybeal, J.; Hauswirth, M.; Henson, C.; Herzog, A.; et al. The SSN ontology of the W3C semantic sensor network incubator group. J. Web Semant. 2012, 17, 25–32. [Google Scholar] [CrossRef]
- Haller, A.; Janowicz, K.; Cox, S.J.; Lefrançois, M.; Taylor, K.; Le Phuoc, D.; Lieberman, J.; García-Castro, R.; Atkinson, R.; Stadler, C. The Modular SSN Ontology: A Joint W3C and OGC Standard Specifying the Semantics of Sensors, Observations, Sampling, and Actuation. Semantic Web. 2018, 10, 9–32. [Google Scholar] [CrossRef] [Green Version]
- Rueda, C.; Galbraith, N.; Morris, R.A.; Bermudez, L.E.; Graybeal, J.; Arko, R.A.; Mmi Device Ontology Working Group. The MMI Device Ontology: Enabling Sensor Integration. Available online: https://ui.adsabs.harvard.edu/abs/2010AGUFMIN44B.08R/abstract (accessed on 22 March 2020).
- Schildhauer, M.; Matthew, B.; Shawn Bowers, J.; Madin, J.; Krivov, S.; Pennington, D.; Villa, F.; Leinfelder, B.; Jones, C.; O’Brien, M. The Extensible Observation Ontology. Available online: http://agroportal.lirmm.fr/ontologies/OBOE (accessed on 22 March 2020).
- Ojha, T.; Misra, S.; Raghuwanshi, N.S. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput. Electron. Agric. 2015, 118, 66–84. [Google Scholar] [CrossRef]
- Li, Y.; Parker, L.E. A spatial-temporal imputation technique for classification with missing data in a wireless sensor network. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 3272–3279. [Google Scholar] [CrossRef]
- Xie, M.; Hu, J.; Guo, S. Segment-Based Anomaly Detection with Approximated Sample Covariance Matrix in Wireless Sensor Networks. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 574–583. [Google Scholar] [CrossRef]
- Rhayem, A.; Mhiri, M.B.A.; Salah, M.B.; Gargouri, F. Ontology-based system for patient monitoring with connected objects. Procedia Comput. Sci. 2017, 112, 683–692. [Google Scholar] [CrossRef]
- Charalampidis, C.C.; Keramopoulos, E.A. Semantic Web user interfaces—A model and a review. Data Knowl. Eng. 2018, 115, 214–227. [Google Scholar] [CrossRef]
- Introduction to XML. Available online: https://www.w3schools.com/xml/xml_whatis.asp (accessed on 22 March 2020).
- What is JSON? Available online: https://www.w3schools.com/whatis/whatis_json.asp (accessed on 22 March 2020).
- What is HTML? Available online: https://www.w3schools.com/whatis/whatis_html.asp (accessed on 22 March 2020).
- Resource Description Framework (RDF). Available online: https://www.w3.org/RDF/ (accessed on 22 March 2020).
- Davis, I.; Thomas Steiner, T.; Arnaud, J.L.H. RDF 1.1 JSON Alternate Serialization (RDF/JSON). Available online: https://www.w3.org/TR/rdf-json/ (accessed on 22 March 2020).
- David, B. RDF 1.1 N-Triples. Available online: https://www.w3.org/TR/n-triples/ (accessed on 22 March 2020).
- Tim, B.-L.; Dan, C. Notation3 (N3): A Readable RDF Syntax. Available online: https://www.w3.org/TeamSubmission/n3/ (accessed on 22 March 2020).
- David, B.; Tim, B.-L.; Eric, P.; Gavin, C. RDF 1.1 Turtle. Available online: https://www.w3.org/TR/turtle/ (accessed on 22 March 2020).
- Francesconi, E.; Montemagni, S.; Peters, W.; Tiscornia, D. Integrating a Bottom–Up and Top–Down Methodology for Building Semantic Resources for the Multilingual Legal Domain. In Semantic Processing of Legal Texts; Lecture Notes in Computer Science; Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6036. [Google Scholar]
- Koksal, I.; Gunes, N.T. Descriptors for Hazelnut; Bioversity International: Maccarese, Italy; FAO: Rome, Italy, 2008. [Google Scholar]
- What is Arduino? Available online: https://www.arduino.cc/en/guide/introduction (accessed on 22 March 2020).
- González-Buesa, J.; Salvador, M.L. An Arduino-based low cost device for the measurement of the respiration rates of fruits and vegetables. Comput. Electron. Agric. 2019, 162, 14–20. [Google Scholar] [CrossRef]
- XBee Zigbee Mesh Kit. Available online: https://www.digi.com/resources/documentation/digidocs/pdfs/90001942-13.pdf (accessed on 24 March 2020).
- XBee/XBee-PRO S2C Zigbee. Available online: https://www.digi.com/resources/documentation/digidocs/pdfs/90002002.pdf (accessed on 24 March 2020).
- dotNetRDF: An Open Source. NET Library for RDF. Available online: https://www.dotnetrdf.org/ (accessed on 26 March 2020).
- What is SUMI? Available online: http://sumi.uxp.ie/about/whatis.html (accessed on 19 April 2020).
Ontology | Definition |
---|---|
Sensor node ontology | It identifies sensor node’s essential elements [34]. |
Formal pedigree ontology for level-one sensor fusion | An ontology for one-level sensor fusion regarding naval operations. The general concepts of this ontology are suitable to apply to any domain which includes sensor fusion [35]. |
OntoSensor | It is a prototype sensor knowledge repository and involves the definitions of concepts and properties adopted in part from SensorML [36]. |
Sensor–data ontology | Developed for managing information of sensors in an efficient way and easing data retrieving processes for users or search engines [37]. |
The Semantic Sensor Network Ontology | It identifies the facilities and activities of the sensors [38]. |
Sensor Web Enablement (SWE) common data model | It describes models which are used to transmit data obtained from sensors in the low-level [39]. |
Sensor Model Language (SensorML). | It is one of the standards, which are generated under SWE [40]. |
Semantic Sensor Network (SSN) | It identifies sensors, their accuracy and capabilities and the procedures used while sensing [41]. |
Sensor, Observation, Sample and Actuator (SOSA) ontology | It includes core concepts, which are used by SSN as well [42]. |
The Marine Metadata Interoperability (MMI) device ontology | It identifies varied types of instruments using an extendable conceptual model and controlled vocabularies [43]. |
The Extensible Observation Ontology (OBOE) | It is a formal ontology used for modeling scientific observation and semantic measurement [44]. |
File Format | Abbreviation | Mime Type | Description |
---|---|---|---|
eXtensible markup language | XML | text/xml | Software and hardware independent for sharing data between different applications [50] |
JavaScript object notation | JSON | application/json | Frequently used lightweight format for sharing and storing data [51] |
Hypertext markup language | HTML | text/html | Standard markup language for Web pages [52] |
Comma-separated values | CSV | text/csv | A type of data file which separate values using comma |
Excel spreadsheet | Excel | application/vnd.ms-excel | Stores data into rows and columns, provides powerful analyzing capabilities and calculating operations |
Resource description framework | RDF/XML | application/rdf + xml | Standard model for data interchange on the Web [53] |
RDF/JSON | application/json | An RDF graph to be written in a form compatible with JSON [54] | |
N-triples | application/n-triples | A line-based, plain text format for encoding RDF graph [55] | |
Notation 3 | text/n3 | An assertion and logic language, superset of RDF [56] | |
Terse RDF triple language | Turtle | text/turtle | An RDF graph to be written in a compact and natural text form [57] |
Descriptor | Definition | Number of Sub Descriptor |
---|---|---|
Passport | -Provides basic information used for the general information of the accession -Describes parameters when the accession is originally collected | Two main descriptors -First descriptor has 14 sub descriptors -Second descriptor has 23 sub descriptors. |
Management | -Provides the basis for the management of accession -Assists their multiplication and regeneration | One main descriptor and this has 12 sub-descriptors. |
Environment and Site | -Describes the environmental and site-specific parameters | Two main descriptors -First descriptor has 15 sub- descriptors -Second descriptor has 1 main descriptor and this has 22 sub-descriptors. |
Characterization | -Enables an easy and quick discrimination between phenotypes | One main descriptor and this has 10 sub-descriptors |
Evaluation | -Includes characters such as yield, agronomic performance, stress susceptibilities and biochemical and cytological traits | Seven main descriptors and these descriptors |
Sensor | Measurement | Abbreviation |
---|---|---|
BH1750—light level sensor | Light intensity | LI |
BME 280 temperature humidity barometric pressure sensor | Weather temperature | WT |
Weather humidity | WH | |
pressure | PR | |
altitude | AL | |
MPU6050 6-axis acceleration and gyro sensor | Gyro measurement range | GR |
Rain sensor | Rain rate | RR |
Soil moisture sensor | Soil moisture | SM |
UV sensor module Arduino ultraviolet ray I2C | Ultraviolet | UV |
MICS-4514 carbon monoxide nitrogen oxygen sensor | Carbon monoxide | CO |
Nitrogen dioxide | NO2 |
Measurement | Abbreviation | Data Unit | Class Axiom |
---|---|---|---|
Light intensity | LI | lux | :Light rdf:type owl:Class; rdfs:subClassOf:ClimateOfTheSite. |
Weather temperature | WT | °C | :Temperature rdf:type owl:Class; rdfs:subClassOf:ClimateOfTheSite. |
Weather humidity | WH | % | :RelativeHumidity rdf:type owl:Class; rdfs:subClassOf:ClimateOfTheSite. |
Pressure | PR | Pa | :AtmosphericPressure rdf:type owl:Class; rdfs:subClassOf:ClimateOfTheSite. |
Altitude | AL | m | :ElevationOfCollectingSite rdf:type owl:Class; rdfs:subClassOf:CollectingDescriptor. |
Gyro measurement range | GR | °/s | :Slope rdf:type owl:Class; rdfs:subClassOf:SiteEnvironment. |
Rain rate | RR | – | :Rainfall rdf:type owl:Class; rdfs:subClassOf:ClimateOfTheSite. |
Soil moisture | SM | – | :SoilMoisture rdf:type owl:Class; rdfs:subClassOf:SiteEnvironment. |
Ultraviolet | UV | nm | :Ultraviolet rdf:type owl:Class; rdfs:subClassOf:ClimateOfTheSite. |
Carbon monoxide | CO | ppm | :CarbonmonoxideConcentration rdf:type owl:Class; rdfs:subClassOf:ClimateOfTheSite. |
Nitrogen dioxide | NO2 | ppb | :NitrogendioxideConcentration rdf:type owl:Class; rdfs:subClassOf:ClimateOfTheSite. |
<rdf:Description rdf:about=“http://www.opendatainagriculture.com/ontologies/hazelnutontology#Temperature”> <mapping:ClassName>Temperature</mapping:ClassName> <mapping:DataUnit>°C</mapping:DataUnit> <mapping:SensorId>1000</mapping:SensorId> <mapping:SensorTypeName>BME 280 Temperature Humidity Barometric Pressure Sensor</mapping:SensorTypeName> <mapping:TypeDef>WT</mapping:TypeDef> <mapping:TypeId>2</mapping:TypeId> <mapping:TypeName>Weather Temperature</mapping:TypeName> </rdf:Description> |
SELECT ?subject ?predicate ?object WHERE { ?subject ?predicate ?object. FILTER(?object = “2”) } | |
Subject | http://www.opendatainagriculture.com/ontologies/hazelnutontology#Temperature |
Predicate | http://www.opendatainagriculture.com/sensors#TypeId |
Object | 2 |
Rule 1 | Topography(?x) ∧ hasPercentegeValue(?x, ?y) ∧ swrlb:greaterThanOrEqual(?y, “0”) ∧ swrlb:lessThanOrEqual(?y, “0.5”) → hasTopography(?x, Flat) |
Rule 2 | Topography(?x) ∧ hasPercentegeValue(?x, ?y) ∧ swrlb:greaterThanOrEqual(?y, 0.6) ∧ swrlb:lessThanOrEqual(?y, 2.9) → hasTopography(?x, AlmostFlat) |
Rule 3 | Topography(?x) ∧ hasPercentegeValue(?x, ?y) ∧ swrlb:greaterThanOrEqual(?y, 3.0) ∧ swrlb:lessThanOrEqual(?y, 5.9) → hasTopography(?x, GentlyUndulating) |
Rule 4 | Topography(?x) ∧ hasPercentegeValue(?x, ?y) ∧ swrlb:greaterThanOrEqual(?y, 6.0) ∧ swrlb:lessThanOrEqual(?y, 10.9) → hasTopography(?x, Undulating) |
Rule 5 | Topography(?x) ∧ hasPercentegeValue(?x, ?y) ∧ swrlb:greaterThanOrEqual(?y, 11.0) ∧ swrlb:lessThanOrEqual(?y, 15.9) → hasTopography(?x, Rolling) |
Rule 6 | Topography(?x) ∧ hasPercentegeValue(?x, ?y) ∧ swrlb:greaterThanOrEqual(?y, 16.0) ∧ swrlb:lessThanOrEqual(?y, 30.0) → hasTopography(?x, Hilly) |
Rule 7 | Topography(?x) ∧ hasPercentegeValue(?x, ?y) ∧ swrlb:greaterThanOrEqual(?y, 31.00) ∧ Elevation(?x) ∧ hasValue(?x, ?z) ∧ swrlb:lessThanOrEqual(?z, 300)→ hasTopography(?x, SteeplyDissected) |
Rule 8 | Topography(?x) ∧ hasPercentegeValue(?x, ?y) ∧ swrlb:greaterThanOrEqual(?y, 31.00) ∧ Elevation(?x) ∧ hasValue(?x, ?z) ∧ swrlb:greaterThanOrEqual(?z, 301) → hasTopography(?x, Mountainous) |
Age range | 20–25 | 26–30 | 31–35 | 36–40 | 41–45 |
Number of male respondents | 7 | 3 | 2 | 0 | 3 |
Number of female respondents | 4 | 3 | 1 | 2 | 2 |
Total | 11 | 6 | 3 | 2 | 5 |
Mean | Standard Deviation | Median | Interquartile Range (IQR) | Minimum | Maximum | |
---|---|---|---|---|---|---|
Global usability | 67.67 | 7.00 | 68.0 | 5.0 | 45 | 75 |
Efficiency | 63.33 | 4.39 | 64.0 | 7.0 | 48 | 69 |
Affect | 64.52 | 4.60 | 65.0 | 8.0 | 54 | 70 |
Helpfulness | 63.07 | 8.71 | 65.0 | 8.0 | 38 | 72 |
Controllability | 64.81 | 5.97 | 66.0 | 1.0 | 48 | 74 |
Learnability | 56.78 | 7.30 | 57.0 | 9.0 | 40 | 69 |
n | Usability | Efficiency | Affect | Helpfulness | Control | Learnability | |
---|---|---|---|---|---|---|---|
Very experienced and technical | 19 | 69 | 64.4 | 63.9 | 64.9 | 65.6 | 59.1 |
I am experienced, but not technical | 2 | 60.5 | 52.5 | 63.5 | 54 | 57 | 51 |
I can cope with most software | 6 | 65.8 | 63.5 | 66.8 | 60.3 | 64.8 | 51.5 |
I find most software difficult to use | 0 | – | – | – | – | – | – |
n | Usability | Efficiency | Affect | Helpfulness | Control | Learnability | |
---|---|---|---|---|---|---|---|
Extremely important | 21 | 67.9 | 63.7 | 64 | 63.2 | 65.1 | 57.9 |
Important | 6 | 66.8 | 62 | 66.2 | 62.5 | 63.8 | 53 |
Not very important | 0 | – | – | – | – | – | – |
Not important at all | 0 | – | – | – | – | – | – |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aydin, S.; Aydin, M.N. Semantic and Syntactic Interoperability for Agricultural Open-Data Platforms in the Context of IoT Using Crop-Specific Trait Ontologies. Appl. Sci. 2020, 10, 4460. https://doi.org/10.3390/app10134460
Aydin S, Aydin MN. Semantic and Syntactic Interoperability for Agricultural Open-Data Platforms in the Context of IoT Using Crop-Specific Trait Ontologies. Applied Sciences. 2020; 10(13):4460. https://doi.org/10.3390/app10134460
Chicago/Turabian StyleAydin, Sahin, and Mehmet Nafiz Aydin. 2020. "Semantic and Syntactic Interoperability for Agricultural Open-Data Platforms in the Context of IoT Using Crop-Specific Trait Ontologies" Applied Sciences 10, no. 13: 4460. https://doi.org/10.3390/app10134460
APA StyleAydin, S., & Aydin, M. N. (2020). Semantic and Syntactic Interoperability for Agricultural Open-Data Platforms in the Context of IoT Using Crop-Specific Trait Ontologies. Applied Sciences, 10(13), 4460. https://doi.org/10.3390/app10134460