Surveying and High-Resolution Topography of the Ochtiná Aragonite Cave Based on TLS and Digital Photogrammetry
Abstract
:1. Introduction
Study Site
2. Methods
2.1. Surveying Methods
2.1.1. Terrestrial Laser Scanning
2.1.2. Digital Close-Range Photogrammetry
3. Results
3.1. New Detailed Map and Sections of the Cave
3.2. 3D Model of the Cave
3.3. 3D Model from the Photogrammetric Survey
4. Interpretation and Discussion
4.1. Surveying Small-Scale Morphologies
Comparison of TLS and DCRP
4.2. Implications for the Origin of Some Specific Morphologies
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ševčík, R.; Kantor, J. Aragonitová jaskyňa na Hrádku pri Jelšave. Geologické Práce, Zprávy 1956, 7, 161–171. [Google Scholar]
- Droppa, A. Ochtinská aragonitová jaskyňa. Geografický Čas. 1957, 9, 169–184. [Google Scholar]
- Sýkora, J. Základná mapa Ochtinskej aragonitovej jaskyne, číselná a ostatná dokumentácia: Manuscript 1983.
- Sýkora, J. Meranie A Mapovanie Ochtinskej Aragonitovej Jaskyne. In Proceedings of the Výskum, Využívanie A Ochrana Jaskýň, Zborník Referátov Z 1. Vedeckej Konferencie, SSJ, Liptovský Mikuláš, Slovakia, 8–10 October 1997; pp. 147–150. [Google Scholar]
- Sýkora, J. Ochtinská aragonitová jaskyňa, profily a rezy: Manuscript 1985.
- Gažík, P. Geografický informačný systém technických prvkov v Ochtinskej aragonitovej jaskyni. Slovenský Kras 2004, 42, 137–139. [Google Scholar]
- Grecula, P. Gemerikum-Segment Riftogfénneho Bazénu Paleotetýdy II; Mineralia Slovaca: Bratislava, Slovakia, 1982. [Google Scholar]
- Gaál, Ľ. Geológia Ochtinskej aragonitovej jaskyne. Slovenský Kras 2004, 42, 37–56. [Google Scholar]
- Homza, Š.; Rajman, L.; Roda, Š. Vznik a vývoj krasového fenoménu Ochtinskej aragonitovej jaskyne. Slovenský Kras 1970, 8, 21–68. [Google Scholar]
- Gaál, Ľ.; Ženiš, P. Kras Revúckej vrchoviny. Slovenský Kras 1986, 24, 27–60. [Google Scholar]
- Rajman, L.; Roda, Š., Jr.; Roda sen, Š.; Ščuka, J. Unterchungen über die Genese der Aragonithöhle von Ochtiná (Slowakei). Die Höhle 1993, 44, 1–8. [Google Scholar]
- Bosák, P.; Bella, P.; Cílek, V.; Ford, D.C.; Hercman, H.; Kadlec, J.; Osborne, A.; Pruner, P. Ochtiná Aragonite Cave (Western Carpathians, Slovakia): Morphology, Mineralogy of the Fill and Genesis. Geol. Carpath. 2002, 53, 399–410. [Google Scholar]
- Bella, P.; Bosák, P.; Gaál, Ľ.; Pruner, P.; Haviarová, D. Ochtinská aragonitová jaskyňa-špecifický typ hypogénnej jaskyne? Aragonit 2017, 20, 65–66. [Google Scholar]
- Bella, P. Geomorfologické pomery Ochtinskej aragonitovej jaskyne. Slovenský Kras 2004, 42, 57–88. [Google Scholar]
- Kempe, S.; Brandt, A.; Seeger, M.; Vladi, F. “Facetten” and “Laugdecken”, the typical morphological elements of caves developed in standing water. Annales Des Spéléologie 1975, 30, 705–708. [Google Scholar]
- Lange, A. Planes of repose in caves. Cave Notes 1963, 5, 41–48. [Google Scholar]
- Ford, D.C.; Williams, P.W. Karst Hydrogeology and Geomorphology; Wiley: Chichester, UK, 2007. [Google Scholar]
- Cui, H.; Hu, Q.; Mao, Q.; Song, M. Spiral trajectory planning approach for underground cavity measurements based on laser scanning. Measurement 2017, 110, 166–175. [Google Scholar] [CrossRef]
- Canavese, E.P.; Forti, P.; Naseddu, A.; Ottelli, L.; Tedeschi, R. Laser scanning technology for the hypogean survey: The case of Santa Barbara karst system (Sardinia, Italy). Acta Carsologica 2011, 40. [Google Scholar] [CrossRef]
- Jaillet, S.; Sadier, B.; Hajri, S.; Ployon, E.; Delannoy, J.-J. Une analyse 3D de l’endokarst : Applications lasergrammétriques sur l’aven d’Orgnac (Ardèche, France). Geomorphologie 2011, 17, 379–394. [Google Scholar] [CrossRef] [Green Version]
- Cosso, T.; Ferrando, I.; Orlando, A. Surveying and mapping a cave using 3d laser scanner: The open challenge with free and open source software. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 45, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Gallay, M.; Kaňuk, J.; Hochmuth, Z.; Meneely, J.; Hofierka, J.; Sedlák, V. Large-scale and high-resolution 3-D cave mapping by terrestrial laser scanning: A case study of the Domica Cave, Slovakia. Int. J. Speleol. 2015, 44, 277–291. [Google Scholar] [CrossRef] [Green Version]
- Gallay, M.; Hochmuth, Z.; Kaňuk, J.; Hofierka, J. Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning. Hydrol. Earth Syst. Sci. 2016, 20, 1827–1849. [Google Scholar] [CrossRef] [Green Version]
- Silvestre, I.; Rodrigues, J.; Figueiredo, M.; Veiga-Pires, C. High-resolution digital 3D models of Algar do Penico Chamber: Limitations, challenges, and potential. Int. J. Speleol. 2015, 44, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Idrees, M.O.; Pradhan, B. A decade of modern cave surveying with terrestrial laser scanning: A review of sensors, method and application development. Int. J. Speleol. 2016, 45, 71–88. [Google Scholar] [CrossRef] [Green Version]
- Idrees, M.O.; Pradhan, B. Characterization of Macro-and Micro-Geomorphology of Cave Channel from High-Resolution 3D Laser Scanning Survey: Case Study of Gomantong Cave in Sabah, Malaysia. In Cave Investigation; Karabulut, S., Cinku, M.C., Eds.; InTech: London, UK, 2017; ISBN 978-953-51-3331-5. [Google Scholar]
- Fabbri, S.; Sauro, F.; Santagata, T.; Rossi, G.; De Waele, J. High-resolution 3-D mapping using terrestrial laser scanning as a tool for geomorphological and speleogenetical studies in caves: An example from the Lessini mountains (North Italy). Geomorphology 2017, 280, 16–29. [Google Scholar] [CrossRef]
- De Waele, J.; Fabbri, S.; Santagata, T.; Chiarini, V.; Columbu, A.; Pisani, L. Geomorphological and speleogenetical observations using terrestrial laser scanning and 3D photogrammetry in a gypsum cave (Emilia Romagna, N. Italy). Geomorphology 2018, 319, 47–61. [Google Scholar] [CrossRef]
- Štroner, M.; Pospíšil, J.; Koska, B.; Křemen, T.; Urban, R.; Smítka, V.; Třasák, P. 3D Skenovací Systémy; České Vysoké Učení Technické v Praze: Praha, Czechia, 2013. [Google Scholar]
- Lundberg, J.; McFarlane, D.A. Post-speleogenetic biogenic modification of Gomantong Caves, Sabah, Borneo. Geomorphology 2012, 157, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Štroner, M.; Pospíšil, J. Terestrické Skenovací Systémy; České Vysoké Učení Technické v Praze: Praha, Czechia, 2008. [Google Scholar]
- Reshetyuk, Y. Terrestrial Laser Scanning; VDM Verlag Dr. Müller: Saarbrücken, Germany, 2009. [Google Scholar]
- Gordon, S.J. Structural Deformation Measurement Using Terrestrial Laser Scanners. Ph.D. Thesis, Curtin University of Technology, Department of Spatial Science, Bentley, Australia, 2005. [Google Scholar]
- Peña-Villasenín, S.; Gil-Docampo, M.; Ortiz-Sanz, J. 3-D Modeling of Historic Façades Using SFM Photogrammetry Metric Documentation of Different Building Types of a Historic Center. Int. J. Archit. Herit. 2017, 11, 871–890. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Pukanská, K.; Bartoš, K.; Bella, P.; Rákay ml., Š.; Sabová, J. Comparison of non-contact surveying technologies for modelling underground morphological structures. Acta Montan. Slovaca 2017, 22, 246–256. [Google Scholar]
- Hochmut, Z. Problémy Speleologického Prieskumu Podzemných Tokov Na Slovensku 1; Slovenská speleologická spoločnosť: Prešov-Košice, Slovakia, 2000; ISBN 966963-4-3. [Google Scholar]
- Bella, P. Korózne šikmé facety v jaskyniach a ich morfogenetické znaky-príklady z vybraných jaskýň na Slovensku. Aragonit 2013, 18, 78–84. [Google Scholar]
- Biese, W.; Über Höhlenbildung, I. Über Höhlenbildung, I. Teil. Entstehung Der Gipshölen Am Südlichen Harzrad und Am Kyffhäuser; Abhandlung Der Preußischen Geologischen Landsanstalt; NF: Berlin, Germany, 1931. [Google Scholar]
- Quaas, S.; Rudolph, H.; Luthardt, R.G. Direct mechanical data acquisition of dental impressions for the manufacturing of CAD/CAM restorations. J. Dent. 2007, 35, 903–908. [Google Scholar] [CrossRef]
- Tafti, A.P.; Kirkpatrick, A.B.; Alavi, Z.; Owen, H.A.; Yu, Z. Recent advances in 3D SEM surface reconstruction. Micron 2015, 78, 54–66. [Google Scholar] [CrossRef]
- Li, X.; Chen, J.; Zhu, H. A new method for automated discontinuity trace mapping on rock mass 3D surface model. Comput. Geosci. 2016, 89, 118–131. [Google Scholar] [CrossRef]
- Xiao, D.; Fang, F.; Pain, C.C.; Navon, I.M. Towards non-intrusive reduced order 3D free surface flow modelling. Ocean Eng. 2017, 140, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Possel, J.K.; Wacongne, C.; van Ham, A.F.; Klink, P.C.; Roelfsema, P.R. 3D printing and modelling of customized implants and surgical guides for non-human primates. J. Neurosci. Methods 2017, 286, 38–55. [Google Scholar] [CrossRef] [PubMed]
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Bolitho, M.; Kazhdan, M.; Burns, R.; Hoppe, H. Multilevel Streaming for Out-of-Core Surface Reconstruction. In Proceedings of the 5th Eurographics Symposium on Geometry Processing, Barcelona, Spain, 4–6 July 2007; pp. 69–78. [Google Scholar]
- Goodman, L.R. Planes of repose in Höllern, Germany. Cave Notes 1964, 6, 17–19. [Google Scholar]
- Klaučo, S.; Filová, J.; Zelinka, J. Vplyv návštevnosti Na Speleoklímu Ochtinskej Aragonitovej Jaskyne. In Proceedings of the Výskum, Využívanie A Ochrana jaskýň, Zborník Referátov Z 1 Vedeckej Konferencie; SSJ: Liptovský Mikuláš, Slovakia, 1998; pp. 75–86. [Google Scholar]
Parameters of Imaging and Image Processing | |
---|---|
No. of used images | 62 |
Average imaging distances | 2.5 m |
No. of tie points 1 | 97,000 |
No. of reconstructed points | 23 mil. |
Ground Sample Distance 2 | 0.8 mm |
Maximal error 3 | 0.9 pix |
Reprojection error 4 | 0.3 pix |
Accuracy in the reference system 5 (Total error) | 3.7 mm |
TLS | SfM | ||
---|---|---|---|
✓ | high accuracy guaranteed by the manufacturer of LS | ✓ | accuracy comparable to TLS for distances typical in cave spaces |
✓ | quicker terrain survey of complex areas | ✓ | high-resolution of small-scale morphological features |
✓ | artificial targets only for registration of individual scans | ✓ | more suitable financial demands |
✓ | direct result of the terrain survey is the final point cloud | ✓ | easy recording of all parts |
✓ | no need for special illumination (only if photo-textured point cloud is not needed) | ✓ | alternate methods of scaling and orientation |
✕ | high financial demands | ✕ | need for sufficient artificial illumination |
✕ | instrumentation handling in narrow cave spaces | ✕ | more time and data demanding survey of larger areas |
✕ | more time and effort demanding terrain survey | ✕ | getting the final data (point cloud) can be computationally demanding |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pukanská, K.; Bartoš, K.; Bella, P.; Gašinec, J.; Blistan, P.; Kovanič, Ľ. Surveying and High-Resolution Topography of the Ochtiná Aragonite Cave Based on TLS and Digital Photogrammetry. Appl. Sci. 2020, 10, 4633. https://doi.org/10.3390/app10134633
Pukanská K, Bartoš K, Bella P, Gašinec J, Blistan P, Kovanič Ľ. Surveying and High-Resolution Topography of the Ochtiná Aragonite Cave Based on TLS and Digital Photogrammetry. Applied Sciences. 2020; 10(13):4633. https://doi.org/10.3390/app10134633
Chicago/Turabian StylePukanská, Katarína, Karol Bartoš, Pavel Bella, Juraj Gašinec, Peter Blistan, and Ľudovít Kovanič. 2020. "Surveying and High-Resolution Topography of the Ochtiná Aragonite Cave Based on TLS and Digital Photogrammetry" Applied Sciences 10, no. 13: 4633. https://doi.org/10.3390/app10134633
APA StylePukanská, K., Bartoš, K., Bella, P., Gašinec, J., Blistan, P., & Kovanič, Ľ. (2020). Surveying and High-Resolution Topography of the Ochtiná Aragonite Cave Based on TLS and Digital Photogrammetry. Applied Sciences, 10(13), 4633. https://doi.org/10.3390/app10134633