Study on the Curing Process of Silver Paste of Heterojunction Solar Cells Using Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. HJT Silver Paste Preparation and Curing
2.3. Characterization
2.4. Experimental Design
3. Results
3.1. Regression Models and Statistical Testing
3.2. Effect of Variables on the Response
3.3. Optimization Experiment and Curing Mechanism
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aberle, A.G. Surface passivation of crystalline silicon solar cells: A review. Prog. Photovolt. 2000, 8, 473–487. [Google Scholar] [CrossRef]
- Fang, H.; Wang, B.; Song, W. Analyzing the interrelationships among barriers to green procurement in photovoltaic industry: An integrated method. J. Clean. Prod. 2020, 249, 119408. [Google Scholar] [CrossRef]
- Xin-gang, Z.; Zhen, W. Technology, cost, economic performance of distributed photovoltaic industry in China. Renew. Sustain. Energy Rev. 2019, 110, 53–64. [Google Scholar] [CrossRef]
- De Souza, L.E.V.; Cavalcante, A.M.G. Towards a sociology of energy and globalization: Interconnectedness, capital, and knowledge in the Brazilian solar photovoltaic industry. Energy Res. Soc. Sci. 2016, 21, 145–154. [Google Scholar] [CrossRef]
- Surek, T. Crystal growth and materials research in photovoltaics: Progress and challenges. J. Cryst. Growth 2005, 275, 292–304. [Google Scholar] [CrossRef]
- Es, F.; Semiz, E.; Orhan, E.; Genç, E.; Kökbudak, G.; Baytemir, G.; Turan, R. Optimization of PERC fabrication based on loss analysis in an industrially relevant environment: First results from GÜNAM photovoltaic line (GPVL). Renew. Energy 2020, 146, 1676–1681. [Google Scholar] [CrossRef]
- Liu, M.; Johnston, M.B.; Snaith, H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Chiu, J.; Zhao, Y.; Zhang, S.; Wuu, D. The role of laser ablated backside contact pattern in efficiency improvement of mono crystalline silicon PERC solar cells. Sol. Energy 2020, 196, 462–467. [Google Scholar] [CrossRef]
- Xu, J.; Yin, J.; Xiao, L.; Zhang, B.; Yao, J.; Dai, S. Bromide regulated film formation of CH3NH3PbI3 in low-pressure vapor-assisted deposition for efficient planar-heterojunction perovskite solar cells. Sol. Energy Mater. Sol. Cells 2016, 157, 1026–1037. [Google Scholar] [CrossRef]
- Lee, Y.; El-Shall, H. Ultra-high aspect ratio titania nanoflakes for dye-sensitized solar cells. Appl. Surf. Sci. 2017, 426, 1263–1270. [Google Scholar] [CrossRef]
- Breitenstein, O.; Sontag, D. Lock-in thermography based local solar cell analysis for high efficiency monocrystalline hetero junction type solar cells. Sol. Energy Mater. Sol. Cells 2019, 193, 157–162. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, H.; Iftiquar, S.M.; Kim, S.; Kim, S.; Ahn, S.; Lee, Y.; Dao, V.A.; Yi, J. Study of stacked-emitter layer for high efficiency amorphous/crystalline silicon heterojunction solar cells. J. Appl. Phys. 2014, 116. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, L.; Diao, H.; Zhang, W.; Wang, G.; Wang, W. Low-temperature sintering properties of the screen-printed silver paste for a-Si:H/c-Si heterojunction solar cells. J. Mater. Sci. Mater. Electron. 2014, 25, 2657–2664. [Google Scholar] [CrossRef]
- Liu, M.; Zhou, Y.; Dong, G.; Wang, W.; Wang, J.; Liu, C.; Liu, F.; Yu, D. SnO2/Mg combination electron selective transport layer for Si heterojunction solar cells. Sol. Energy Mater. Sol. Cells 2019, 200, 109996. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, L.; Diao, H.; Zhang, W.; Wang, G.; Wang, W. Choice of the low-temperature sintering Ag paste for a-Si:H/c-Si heterojunction solar cell based on characterizing the electrical performance. J. Alloys Compd. 2015, 618, 357–365. [Google Scholar] [CrossRef]
- Heraeus. Available online: https://www.heraeus.cn/media/media/hpt/doc_hpt/metallization_pastes_downloads/2020_8/Spotlight_sol590-cn_2020.pdf (accessed on 19 June 2020).
- Li, Y.; Gan, W.; Li, B. Silver nanoparticles-coated glass frits for silicon solar cells. Appl. Phys. A 2016, 122. [Google Scholar] [CrossRef]
- Fu, M.; Cheng, S.; Wang, Y.; Zhou, H.; Fan, L. Effect of Te-Bi glass on the property of the front side silver electrode of crystalline silicon solar cell. J. Inorg. Mater. 2016, 31, 785–790. [Google Scholar]
- Lin, T. The preparation and property study of low-temperature sintered silver-based paste for solar cell. Master’s Thesis, Central South University, Changsha, China, 2014. [Google Scholar]
- Zhang, D.; Wang, R.; Farhan, S.; Cai, Y.; Liu, J. Chemorheological behaviors of TDE-85 toughened by low viscosity liquid epoxy for RTM process. Polym. Test. 2018, 70, 310–319. [Google Scholar] [CrossRef]
- Ramis, X.; Salla, J.M.; Mas, C.; Mantecon, A.; Serra, A. Kinetic study by FTIR, TMA, and DSC of the curing of a mixture of DGEBA resin and gamma-butyrolactone catalyzed by ytterbium triflate. J. Appl. Polym. Sci. 2004, 92, 381–393. [Google Scholar] [CrossRef]
- Lai, Y.; Huang, H.; Huang, Q.; Zhang, H.; Guo, Z. Optimization of the experimental conditions for the synthesis of micro-size monodisperse spherical silver powders using Box–Behnken design. Powder Technol. 2014, 263, 7–13. [Google Scholar] [CrossRef]
- Asante-Sackey, D.; Rathilal, S.; Pillay, V.L.; Tetteh, E.K. Effect of ion exchange dialysis process variables on aluminium permeation using response surface methodology. Environ. Eng. Res. 2020, 25, 714–721. [Google Scholar] [CrossRef]
- Horie, K.; Hiura, H.; Sawada, M.; Mita, I.; Kambe, H. Calorimetric Investigation of Polymerization Reactions. III. Curing Reaction of Epoxides with Amines. J. Polym. Sci. 1970, 8, 1357–1372. [Google Scholar] [CrossRef]
- Chen, P.Z.; Ni, H.; Xu, X.M. FTIR research of epoxy resin-MeTHPA curing system. J. Hubei Univ. 1989, 11, 57–60, 68. [Google Scholar]
Variable | Level (Coded Value) | ||||
---|---|---|---|---|---|
−1.68 | −1 | 0 | 1 | 1.68 | |
t (min) | 30 | 34 | 40 | 46 | 50 |
T (°C) | 170 | 180 | 195 | 210 | 220 |
m (wt%) | 23 | 30 | 40 | 50 | 57 |
Run No. | Levels | Adhesion Strength (Y, KPa) | |||
---|---|---|---|---|---|
t (X1) | T (X2) | m (X3) | Experimental | Predicted | |
1 | −1 | 1 | 1 | 861 | 857 |
2 | −1 | −1 | 1 | 470 | 463 |
3 | −1 | −1 | −1 | 449 | 463 |
4 | −1 | 1 | −1 | 857 | 857 |
5 | 0 | 0 | 0 | 1131 | 1120 |
6 | 1 | −1 | −1 | 627 | 642 |
7 | 1 | −1 | 1 | 638 | 642 |
8 | 1 | 1 | 1 | 832 | 823 |
9 | 1 | 1 | −1 | 806 | 823 |
10 | 0 | 0 | 0 | 1110 | 1120 |
11 | 0 | 0 | 0 | 1108 | 1120 |
12 | 0 | 0 | 0 | 1126 | 1120 |
13 | 0 | 0 | 0 | 1121 | 1120 |
14 | −1.68 | 0 | 0 | 873 | 876 |
15 | 1.68 | 0 | 0 | 1011 | 999 |
16 | 0 | 1.68 | 0 | 952 | 954 |
17 | 0 | −1.68 | 0 | 482 | 471 |
18 | 0 | 0 | 1.68 | 519 | 511 |
19 | 0 | 0 | −1.68 | 511 | 511 |
Source | Sum of Squares | DF a | Mean Square | F-Value | p-Value Prob > F |
---|---|---|---|---|---|
Model | 113,7000 | 9 | 126,300 | 968 | <0.0001 |
x1:t (min) | 18,229 | 1 | 18,229 | 139 | <0.0001 |
x2:T (°C) | 281,900 | 1 | 281,900 | 2161 | <0.0001 |
x3:m (%) | 424.82 | 1 | 424 | 3.26 | 0.1046 b |
x1x2 | 22,716 | 1 | 22,716 | 174 | <0.0001 |
x1x3 | 17.22 | 1 | 17.22 | 0.13 | 0.7247 b |
x2x3 | 0.40 | 1 | 0.40 | 3036 | 0.9573 b |
x12 | 56,475 | 1 | 56,475 | 432 | <0.0001 |
x22 | 282,900 | 1 | 282,900 | 2168 | <0.0001 |
x32 | 633,000 | 1 | 633,000 | 4852 | <0.0001 |
Residual | 1173 | 9 | 130 | ||
Lack of Fit | 762.26 | 5 | 152 | 1.48 | 0.3624 b |
R2 = 0.999; Radj2 = 0.997; Adequate precision = 79.8 |
No. | t (°C) | T (Min) | M (wt%) | Experimental Value | Predicted Value |
---|---|---|---|---|---|
Y (KPa) | Y (KPa) | ||||
1 | 207 | 38 | 41 | 1145 | 1131 |
2 | 198 | 42 | 39 | 1141 | 1131 |
3 | 199 | 44 | 41 | 1156 | 1131 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Dong, H.; Guo, S.; Zhao, L. Study on the Curing Process of Silver Paste of Heterojunction Solar Cells Using Response Surface Methodology. Appl. Sci. 2020, 10, 4857. https://doi.org/10.3390/app10144857
Li X, Dong H, Guo S, Zhao L. Study on the Curing Process of Silver Paste of Heterojunction Solar Cells Using Response Surface Methodology. Applied Sciences. 2020; 10(14):4857. https://doi.org/10.3390/app10144857
Chicago/Turabian StyleLi, Xin, Hongyu Dong, Shaoqing Guo, and Liangfu Zhao. 2020. "Study on the Curing Process of Silver Paste of Heterojunction Solar Cells Using Response Surface Methodology" Applied Sciences 10, no. 14: 4857. https://doi.org/10.3390/app10144857
APA StyleLi, X., Dong, H., Guo, S., & Zhao, L. (2020). Study on the Curing Process of Silver Paste of Heterojunction Solar Cells Using Response Surface Methodology. Applied Sciences, 10(14), 4857. https://doi.org/10.3390/app10144857