Changes in Photo-Protective Energy Dissipation of Photosystem II in Response to Beneficial Bacteria Consortium in Durum Wheat under Drought and Salinity Stresses
Abstract
1. Introduction
2. Materials and Methods
2.1. Pot Experiment
2.2. Preparation of Plant Growth-Promoting Bacteria (PGPB) Inoculums and Seed Treatments
2.3. Chemical Fertilization Treatment
2.4. Drought/Saline Stress Experiment
2.5. Chlorophyll Fluorescence Parameters Referring to the Non-Photochemical Quenching
2.6. Chlorophyll Content
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yaghoubi Khanghahi, M.; Murgese, P.; Strafella, S.; Crecchio, C. Soil Biological Fertility and Bacterial Community Response to Land Use Intensity: A Case Study in the Mediterranean Area. Diversity 2019, 11, 211. [Google Scholar] [CrossRef]
- Guidi, L.; Calatayud, A. Non-invasive tools to estimate stress-induced changes in photosynthetic performance in plants inhabiting Mediterranean areas. Environ. Exp. Bot. 2014, 103, 42–52. [Google Scholar] [CrossRef]
- Chairi, F.; Sanchez-Bragado, R.; Serret, M.D.; Aparicio, N.; Nieto-Taladriz, M.T.; Araus, J.L. Agronomic and physiological traits related to the genetic advance of semi-dwarf durum wheat: The case of Spain. Plant Sci. 2019, 110210. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.E.; Zhang, C.M.; Su, Y.Q.; Ma, J.; Zhang, Z.W.; Yuan, M.; Zhang, H.Y.; Yuan, S. Responses of photosystem II and antioxidative systems to high light and high temperature co-stress in wheat. Environ. Exp. Bot. 2017, 135, 45–55. [Google Scholar] [CrossRef]
- Roháček, K.; Soukupová, J.; Barták, M. Chlorophyll fluorescence: A wonderful tool to study plant physiology and plant stress. In Plant Cell Compartments-Selected Topics; Kerala - India, Plant Cell Compartments: Kerala, India, 2008; pp. 41–104. [Google Scholar]
- Van Amerongen, H.; Chmeliov, J. Instantaneous switching between different modes of non-photochemical quenching in plants. Consequences for increasing biomass production. BBA Bioenerg. 2020, 1861, 148119. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence. a practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Porcel, R.; Redondo-Gómez, S.; Mateos-Naranjo, E.; Aroca, R.; Garcia, R.; Ruiz-Lozano, J.M. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J. Plant Physiol. 2015, 186, 75–83. [Google Scholar] [CrossRef]
- Roháček, K. Chlorophyll fluorescence parameters: The definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 2002, 40, 13–29. [Google Scholar] [CrossRef]
- Pii, Y.; Borruso, L.; Brusetti, L.; Crecchio, C.; Cesco, S.; Mimmo, T. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome. Plant Physiol. Biochem. 2016, 99, 39–48. [Google Scholar] [CrossRef]
- YaghoubiKhanghahi, M.; Ricciuti, P.; Allegretta, I.; Terzano, R.; Crecchio, C. Solubilization of insoluble zinc compounds by zinc solubilizing bacteria (ZSB) and optimization of their growth conditions. Environ. Sci. Pollut. R. 2018, 25, 25862–25868. [Google Scholar]
- Meena, V.S.; Meena, S.K.; Verma, J.P. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecol. Eng. 2017, 107, 8–32. [Google Scholar] [CrossRef]
- Kanagendran, A.; Chatterjee, P.; Liu, B.; Sa, T.; Pazouki, L.; Niinemets, U. Foliage inoculation by Burkholderiavietnamiensis CBMB40 antagonizes methyl jasmonate-mediated stress in Eucalyptus grandis. J. Plant Physiol. 2019, 242, 153032. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, P.; Samaddar, S.; Niinemets, Ü.; Sa, T.M. Brevibacterium linens RS16 confers salt tolerance to Oryza sativa genotypes by regulating antioxidant defence and H+ ATPase activity. Microbiol. Res. 2018, 215, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Santiago, C.D.; Yagi, S.; Ijima, M.; Nashimoto, T.; Sawada, M.; Ikeda, S.; Asano, K.; Orikasa, Y.; Ohwada, T. Bacterial compatibility in combined inoculations enhances the growth of potato seedlings. Microbes Environ. 2017, 32, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of ChlF. Biochim. Biophys. Acta 1989, 99, 87–92. [Google Scholar] [CrossRef]
- Lazár, D. Parameters of photosynthetic energy partitioning. J. Plant Physiol. 2015, 175, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Bilger, W.; Björkman, O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res. 1990, 25, 173–185. [Google Scholar] [CrossRef]
- Kato, M.C.; Hikosaka, K.; Hirotsu, N.; Makino, A.; Hirose, T. The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II. Plant Cell Physiol. 2003, 44, 318–325. [Google Scholar] [CrossRef]
- Demmig-Adams, B.; Adams, W.W.; Barker, D.H.; Logan, B.A.; Bowling, D.R.; Verhoeven, A.S. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol. Plant. 1996, 98, 253–264. [Google Scholar] [CrossRef]
- Buffoni, M.; Testi, M.G.; Pesaresi, P.; Garlaschi, F.M.; Jennings, R.C. A study of the relation between CP29 phosphorylation, zeaxanthin content and fluorescence quenching parameters in Zea mays leaves. Physiol. Plant. 1998, 102, 318–324. [Google Scholar] [CrossRef]
- Schreiber, U.; Schliwa, U.; Bilger, W. Continuous recording of photochemical and non photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 1986, 10, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Porra, R.J. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth. Res. 2002, 73, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Endo, T.; Uebayashi, N.; Ishida, S.; Ikeuchi, M.; Sato, F. Light energy allocation at PSII under field light conditions: How much energy is lost in NPQ-associated dissipation? Plant Physiol. Biochem. 2014, 81, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Kramer, D.M.; Johnson, G.; Kiirats, O. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth. Res. 2004, 79, 209–218. [Google Scholar] [CrossRef]
- Hendrickson, L.; Furbank, R.T.; Chow, W.S. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynth. Res. 2004, 82, 73–81. [Google Scholar] [CrossRef]
- Bennett, D.I.G.; Amaranath, K.; Park, S.; Steen, C.J.; Morris, J.M.; Fleming, G.R. Models and mechanisms of the rapidly reversible regulation of photosynthetic light harvesting. Open Biol. 2019, 9, 190043. [Google Scholar] [CrossRef]
- Flexas, J.; Loreto, F.; Medrano, H. Terrestrial Photosynthesis in a Changing Environment: A Molecular, Physiological and Ecological Approach; Cambridge University Press: New York, NY, USA, 2012. [Google Scholar]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Lu, Y.; Liao, Y.; Nie, J.; Yuan, X.; Chen, F. Use of a leaf chlorophyll content index to improve the prediction of above-ground biomass and productivity. PeerJ 2019, 6, 6240. [Google Scholar] [CrossRef]
- Yaghoubi Khanghahi, M.; Pirdashti, H.; Rahimian, H.; Nematzadeh, G.A.; Ghajar Sepanlou, M.; Salvatori, E.; Crecchio, C. Evaluation of leaf photosynthetic characteristics and photosystem II photochemistry of rice (Oryza sativa L.) under potassium soloubilizing bacteria (KSB) inoculation. Photosynthetica 2019, 57, 500–511. [Google Scholar] [CrossRef]
- Acosta-Motos, J.R.; Díaz-Vivancos, P.; Álvarez, S.; Fernández-García, N.; Sánchez-Blanco, M.J.; Hernández, J.A. NaCl-induced physiological and biochemical adaptative mechanism in the ornamental Myrtuscummunis L. plants. J. Plant Physiol. 2015, 183, 41–51. [Google Scholar] [CrossRef]
- Shu, S.; Yuan, L.Y.; Guo, S.R.; Sun, J.; Yuan, Y.H. Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. Plant Physiol. Biochem. 2013, 63, 209–216. [Google Scholar] [CrossRef]
- Bahari, A.; Pirdashti, H.; Yaghoubi, M. The effects of amino acid fertilizers spraying on photosynthetic pigments and antioxidant enzymes of wheat (Triticum aestivum L.) under salinity stress. Int. J. Agron. Plant Prod. 2013, 4, 787–793. [Google Scholar]
- Meena, M.G.; Yadav, R.K.; Narjary, B.; Yadav, G.; Jat, H.S.; Sheoran, P.; Meena, M.K.; Antil, R.S.; Meena, B.L.; Singh, H.V.; et al. Municipal solid waste (MSW): Strategies to improve salt affected soil sustainability: A review. Waste Manag. 2019, 84, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Yaghoubi Khanghahi, M.; Pirdashti, H.; Rahimian, H.; Nematzadeh, G.A.; Ghajar Sepanlou, M. The role of potassium solubilizing bacteria (KSB) inoculations on grain yield, dry matter remobilization and translocation in rice (Oryza sativa L.). J. Plant Nutr. 2019, 42, 1165–1179. [Google Scholar] [CrossRef]
- Bakhshandeh, E.; Pirdashti, H.; Shahsavarpour Lendeh, K.; Gilani, Z.; Yaghoubi Khanghahi, M.; Crecchio, C. Effects of plant growth promoting microrganisms inoculums on mineral nutrition, growth and productivity of rice (Oryza sativa L.). J. Plant Nutr. 2020, 43, 1643–1660. [Google Scholar] [CrossRef]
- Vandana, U.K.; Singha, B.; Gulzar, A.B.M.; Mazumder, P.B. Molecular Mechanisms in Plant Growth Promoting Bacteria (PGPR) to Resist Environmental Stress in Plants; Academic Press: Cambridge, MA, USA, 2020; pp. 221–233. [Google Scholar]
- Yaghoubi Khanghahi, M.; Pirdashti, H.; Rahimian, H.; Nematzadeh, G.A.; Ghajar Sepanlou, M. Potassium solubilising bacteria (KSB) isolated from rice paddy soil: From isolation, identification to K use efficiency. Symbiosis 2018, 76, 13–23. [Google Scholar] [CrossRef]
- Yaghoubi Khanghahi, M.; Pirdashti, H.; Rahimian, H.; Nematzadeh, G.A.; Ghajar Sepanlou, M. Nutrient use efficiency and nutrient uptake promoting of rice by potassium solubilizing bacteria (KSB). Cereal Res. Commun. 2018, 46, 739–750. [Google Scholar] [CrossRef]
- Hagaggi, N.S.A.; Mohamed, A.A.A. Enhancement of Zea mays (L.) growth performance using indole acetic acid producing endophyte Mixtatheicola isolated from Solenostemma argel (Hayne). S. Afr. J. Bot. 2020. [Google Scholar] [CrossRef]
- Nautiyal, C.S.; Srivastava, S.; Chauhan, P.S.; Seem, K.; Mishra, A.; Sopory, S.K. Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol. Biochem. 2013, 66, 1–9. [Google Scholar] [CrossRef]
- Kumar, A.; Patel, A.S.; Meena, V.S.; Srivastava, R. Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. Biocatal. Agric. Biotechnol. 2019, 20, 101271. [Google Scholar] [CrossRef]
Parameter | Equation | Reference |
---|---|---|
Non-photochemical quenching (NPQ) | Bilger and Björkman [18] | |
Quantum yield of thermal dissipation in the DAS (L) | Kato et al. [19] | |
Quantum yield of thermal dissipation in the LAS (D) | Kato et al. [19] | |
Fraction of light absorbed by PSII that is used in photochemistry (P) | Demmig-Adams et al. [20] | |
Complete non-photochemical quenching of ChlF (qCN) | Buffoni et al. [21] | |
Total quenching of variable ChlF (qTV) | Schreiber et al. [22] | |
Total quenching of ChlF (qTQ) | Buffoni et al. [21] | |
Ratio of the quantum yield of actual PSII photochemistry in LAS to the quantum yield of the constitutive non-regulatory NPQ (PQ) | Lazár [17] |
Experiment | PGPB Inoculation | Chemicals | P (±SD) | Rate of Change (%) | L (±SD) | Rate of Change (%) | D (±SD) | Rate of Change (%) |
---|---|---|---|---|---|---|---|---|
Non-stress | I | −CF | 0.73 b (±0.02) | - | 0.21 a (±0.03) | - | 0.061 a (±0.00) | - |
½CF | 0.74 ab (±0.03) | +1.84 | 0.21 a (±0.01) | −0.86 | 0.045 ab (±0.00) | −26.23 | ||
CF | 0.75 a (±0.04) | +2.54 | 0.20 a (±0.02) | −3.01 | 0.048 ab (±0.00) | −20.15 | ||
+I | −CF | 0.75 a (±0.03) | +3.25 | 0.20 a (±0.01) | −3.15 | 0.043 b (±0.00) | −28.24 | |
½CF | 0.75 a (±0.02) | +3.57 | 0.20 a (±0.01) | −4.40 | 0.043 b (±0.00) | −27.78 | ||
CF | 0.75 a (±0.02) | +2.98 | 0.20 a (±0.02) | −3.32 | 0.044 b (±0.00) | −24.45 | ||
Drought stress | I | −CF | 0.66 c (±0.03) | - | 0.24 a (±0.02) | - | 0.097 a (±0.01) | - |
½CF | 0.68 bc (±0.04) | +2.02 | 0.24 a (±0.03) | −0.31 | 0.083 ab (±0.00) | −14.42 | ||
CF | 0.68 bc (±0.03) | +3.06 | 0.24 a (±0.03) | −0.45 | 0.073 ab (±0.00) | −24.49 | ||
+I | −CF | 0.69 ab (±0.03) | +4.57 | 0.24 a (±0.02) | −0.62 | 0.067 b (±0.00) | −30.93 | |
½CF | 0.71 a (±0.05) | +7.20 | 0.24 a (±0.03) | −0.87 | 0.045 b (±0.00) | −53.61 | ||
CF | 0.69 ab (±0.04) | +3.93 | 0.24 a (±0.02) | −0.34 | 0.065 b (±0.00) | −32.99 | ||
Salinity stress | I | −CF | 0.66 c (±0.04) | - | 0.24 a (±0.02) | - | 0.097 a (±0.00) | - |
½CF | 0.69 bc (±0.05) | +3.38 | 0.23 ab (±0.03) | −2.55 | 0.081 ab (±0.00) | −16.83 | ||
CF | 0.70 bc (±0.04) | +4.98 | 0.23 ab (±0.03) | −2.94 | 0.071 b (±0.00) | −26.72 | ||
+I | −CF | 0.71 ab (±0.03) | +6.58 | 0.23 ab (±0.01) | −5.37 | 0.066 b (±0.00) | −31.96 | |
½CF | 0.73 a (±0.05) | +10.59 | 0.22 bc (±0.02) | −8.32 | 0.047 c (±0.00) | −51.82 | ||
CF | 0.72 ab (±0.03) | +7.97 | 0.21 c (±0.02) | −10.09 | 0.068 b (±0.00) | −29.66 |
Experiment | PGPB Inoculation | Chemicals | NPQ (±SD) | qCN (±SD) | qTV (±SD) | qTQ (±SD) | PQ (±SD) |
---|---|---|---|---|---|---|---|
Non-stress | I | −CF | 0.04 a (±0.00) | 0.04 a (±0.00) | 0.93 c (±0.09) | 0.74 b (±0.04) | 2.81 b (±0.14) |
½CF | 0.02 b (±0.00) | 0.02 b (±0.00) | 0.95 ab (±0.08) | 0.75 ab (±0.06) | 2.95 ab (±0.19) | ||
CF | 0.02 b (±0.00) | 0.02 b (±0.00) | 0.94 bc (±0.07) | 0.75 ab (±0.05) | 3.03 ab (±0.17) | ||
+I | −CF | 0.03 b (±0.00) | 0.03 ab (±0.00) | 0.95 ab (±0.010) | 0.76 a (±0.04) | 3.15 a (±0.23) | |
½CF | 0.02 b (±0.00) | 0.02 b (±0.00) | 0.95 ab (±0.05) | 0.76 a (±0.08) | 3.16 a (±0.24) | ||
CF | 0.03 b (±0.00) | 0.03 ab (±0.00) | 0.96 a (±0.06) | 0.76 a (±0.04) | 3.11 ab (±0.14) | ||
Drought stress | I | −CF | 0.17 ab (±0.02) | 0.15 a (±0.02) | 0.91 c (±0.08) | 0.71 c (±0.05) | 2.30 b (±0.16) |
½CF | 0.12 c (±0.00) | 0.11 b (±0.01) | 0.94 ab (±0.04) | 0.71 c (±0.06) | 2.34 b (±0.17) | ||
CF | 0.12 c (±0.01) | 0.11 b (±0.01) | 0.92 bc (±0.07) | 0.72 bc (±0.07) | 2.44 b (±0.21) | ||
+I | −CF | 0.15 a-c (±0.02) | 0.13 ab (±0.01) | 0.94 ab (±0.06) | 0.73 b (±0.04) | 2.62 ab (±0.12) | |
½CF | 0.18 a (±0.02) | 0.15 a (±0.2) | 0.95 a (±0.09) | 0.75 a (±0.07) | 2.90 a (±0.18) | ||
CF | 0.13 bc (±0.01) | 0.11 b (±0.01) | 0.96 a (±0.06) | 0.73 b (±0.05) | 2.54 ab (±0.16) | ||
Salinity stress | I | −CF | 0.17 a (±0.03) | 0.14 a (±0.02) | 0.91 b (±0.09) | 0.71 b (±0.07) | 2.36 c (±0.16) |
½CF | 0.12 bc (±0.02) | 0.11 b (±0.01) | 0.95 a (±0.06) | 0.74 ab (±0.06) | 2.62 bc (±0.12) | ||
CF | 0.09 d (±0.01) | 0.08 c (±0.01) | 0.94 ab (±0.04) | 0.74 ab (±0.07) | 2.67 b (±0.19) | ||
+I | −CF | 0.13 b (±0.02) | 0.11 b (±0.01) | 0.95 a (±0.09) | 0.74 ab (±0.04) | 2.71 b (±0.20) | |
½CF | 0.08 d (±0.00) | 0.08 c (±0.01) | 0.96 a (±0.06) | 0.75 a (±0.08) | 3.00 a (±0.17) | ||
CF | 0.11 c (±0.01) | 0.10 b (±0.01) | 0.95 a (±0.07) | 0.75 a (±0.06) | 2.88 ab (±0.21) |
Experiment | PGPB Inoculation | Chemicals | Plant Height (±SD) | Root Weight (±SD) | Chla + b (±SD) | Chla/b (±SD) |
---|---|---|---|---|---|---|
cm | g/plant | µg cm−2 | ||||
Non-stress | I | −CF | 61.00 cd (±7.11) | 0.41 c (±0.05) | 11.66 b (±1.09) | 3.68 a (±0.84) |
½CF | 64.00 bc (±5.56) | 0.52 ab (±0.07) | 13.71 a (±0.88) | 03.41 a (±0.46) | ||
CF | 68.33 ab (±6.12) | 0.48 b (±0.06) | 14.24 a (±1.17) | 3.59 a (±0.45) | ||
+I | −CF | 71.00 a (±0.8.01) | 0.55 a (±0.05) | 13.49 a (±0.90) | 3.84 a (±0.34) | |
½CF | 69.33 ab (±6.05) | 0.50 b (±0.06) | 14.72 a (±1.05) | 4.33 a (±0.18) | ||
CF | 68.33 ab (±7.17) | 0.52 ab (±0.07) | 14.71 a (±1.26) | 4.16 a (±0.54) | ||
Drought stress | I | −CF | 46.33 c (±3.68) | 0.57 bc (±0.05) | 8.22 c (±1.18) | 2.69 a (±0.45) |
½CF | 54.00 b (±4.46) | 0.55 bc (±0.06) | 8.68 bc (±1.04) | 3.07 a (±0.36) | ||
CF | 54.00 b (±5.07) | 0.64 ab (±0.08) | 9.89 b (±1.47) | 2.89 a (±0.67) | ||
+I | −CF | 59.00 a (±6.58) | 0.60 b (±0.06) | 11.65 a (±0.56) | 2.51 a (±0.24) | |
½CF | 55.33 b (±4.46) | 0.60 b (±0.07) | 11.30 a (±1.09) | 2.71 a (±0.57) | ||
CF | 52.00 b (±6.74) | 0.67 a (±0.05) | 12.52 a (±0.86) | 2.41 a (±0.35) | ||
Salinity stress | I | −CF | 51.67 d (±0.03) | 0.34 c (±0.05) | 9.58 c (±0.79) | 2.37 a (±0.37) |
½CF | 55.33 cd (±6.22) | 0.39 b (±0.03) | 10.27 b (±1.10) | 2.84 a (±0.16) | ||
CF | 59.33 c (±5.61) | 0.36 bc (±0.05) | 11.17 ab (±0.94) | 2.47 a (±0.37) | ||
+I | −CF | 64.67 ab (±7.31) | 0.41 ab (±0.05) | 10.32 b (±0.59) | 2.59 a (±0.44) | |
½CF | 59.33 c (±5.50) | 0.44 a (±0.06) | 11.01 ab (±0.96) | 3.06 a (±0.48) | ||
CF | 68.67 a (±7.12) | 0.40 ab (±0.05) | 12.40 a (±1.07) | 2.46 a (±0.26) |
Variable | r | ||
---|---|---|---|
Non-Stress | Drought | Salinity | |
P | 0.42 * | 0.39 * | 0.47 * |
L | −0.37 NS | −0.20 NS | −0.33 NS |
D | −0.09 NS | −0.18 NS | −0.34 NS |
NPQ | −0.24 NS | −0.08 NS | −0.43 * |
qCN | −0.20 NS | 0.19 NS | −0.15 NS |
qTV | 0.09 NS | 0.39 * | 0.39 * |
qTQ | 0.41 * | 0.47 * | 0.40 * |
PQ | 0.40 * | 0.44 * | 0.39 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaghoubi Khanghahi, M.; Strafella, S.; Crecchio, C. Changes in Photo-Protective Energy Dissipation of Photosystem II in Response to Beneficial Bacteria Consortium in Durum Wheat under Drought and Salinity Stresses. Appl. Sci. 2020, 10, 5031. https://doi.org/10.3390/app10155031
Yaghoubi Khanghahi M, Strafella S, Crecchio C. Changes in Photo-Protective Energy Dissipation of Photosystem II in Response to Beneficial Bacteria Consortium in Durum Wheat under Drought and Salinity Stresses. Applied Sciences. 2020; 10(15):5031. https://doi.org/10.3390/app10155031
Chicago/Turabian StyleYaghoubi Khanghahi, Mohammad, Sabrina Strafella, and Carmine Crecchio. 2020. "Changes in Photo-Protective Energy Dissipation of Photosystem II in Response to Beneficial Bacteria Consortium in Durum Wheat under Drought and Salinity Stresses" Applied Sciences 10, no. 15: 5031. https://doi.org/10.3390/app10155031
APA StyleYaghoubi Khanghahi, M., Strafella, S., & Crecchio, C. (2020). Changes in Photo-Protective Energy Dissipation of Photosystem II in Response to Beneficial Bacteria Consortium in Durum Wheat under Drought and Salinity Stresses. Applied Sciences, 10(15), 5031. https://doi.org/10.3390/app10155031