Reflective Semiconductor Optical Amplifier Direct Modulation Capability Enhancement Using Birefringent Fiber Loop
Abstract
:1. Introduction
2. Working Principle Qualitative Explanation
3. Experiment
4. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Prat, J. Next-Generation FTTH Passive Optical Networks; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5. [Google Scholar]
- Connelly, M.J. Reflective semiconductor optical amplifier pulse propagation model. IEEE Photon. Technol. Lett. 2011, 24, 95–97. [Google Scholar] [CrossRef] [Green Version]
- Spiekman, L.H. Active devices in passive optical networks. J. Light. Technol. 2013, 31, 488–497. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, J.; Wang, J.; Liu, L. Multiwavelength mode-locked fiber-ring laser based on reflective semiconductor optical amplifiers. IEEE Photon. Technol. Lett. 2007, 19, 1418–1420. [Google Scholar] [CrossRef]
- Guo, L.; Connelly, M. A novel approach to all-optical wavelength conversion by utilizing a reflective semiconductor optical amplifier in a co-propagation scheme. Opt. Commun. 2008, 281, 4470–4473. [Google Scholar] [CrossRef]
- Liu, Z.; Sadeghi, M.; de Valicourt, G.; Brenot, R.; Violas, M. Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems. IEEE Photon. Technol. Lett. 2011, 23, 576–578. [Google Scholar] [CrossRef]
- Peng, P.; Shiu, K.; Liu, W.; Chen, K.; Lu, H. A fiber-optical cable television system using a reflective semiconductor optical amplifier. Laser Phys. 2013, 23, 025106. [Google Scholar] [CrossRef]
- Meehan, A.; Connelly, M.J. Experimental characterization and modeling of the improved low frequency response of a current modulated bulk RSOA slow light based microwave phase shifter. Opt. Commun. 2015, 341, 241–244. [Google Scholar] [CrossRef]
- Wang, X.; Feng, X.; Zhang, P.; Wang, T.; Gao, S. Single-source bidirectional free-space optical communications using reflective SOA-based amplified modulating retro-reflection. Opt. Commun. 2017, 387, 43–47. [Google Scholar] [CrossRef]
- Wei, H.; Krishnaswamy, S. Comparative assessment of erbium fiber ring lasers and reflective SOA linear lasers for fiber Bragg grating dynamic strain sensing. Appl. Opt. 2017, 56, 3867–3874. [Google Scholar] [CrossRef]
- Kotb, A.; Zoiros, K.E.; Guo, C. Performance investigation of 120 Gb/s all-optical logic XOR gate using dual-reflective semiconductor optical amplifier-based scheme. J. Comput. Electron. 2018, 17, 1640–1649. [Google Scholar] [CrossRef]
- Dúill, S.Ó.; Marazzi, L.; Parolari, P.; Brenot, R.; Koos, C.; Freude, W.; Leuthold, J. Efficient modulation cancellation using reflective SOAs. Opt. Express 2012, 20, B587–B594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, E. Next-generation broadband access networks and technologies. J. Light. Technol. 2011, 30, 597–608. [Google Scholar] [CrossRef]
- Cho, K.Y.; Takushima, Y.; Chung, Y.C. 10-Gb/s operation of RSOA for WDM PON. IEEE Photon. Technol. Lett. 2008, 20, 1533–1535. [Google Scholar] [CrossRef]
- Totović, A.R.; Crnjanski, J.V.; Krstić, M.M.; Gvozdić, D.M. Numerical study of the small-signal modulation bandwidth of reflective and traveling-wave SOAs. J. Light. Technol. 2015, 33, 2758–2764. [Google Scholar] [CrossRef]
- Rizou, Z.; Zoiros, K.; Connelly, M. Semiconductor optical amplifier pattern effect suppression using optical notch filtering. J. Eng. Sci. Technol. Rev. 2016, 9, 198–201. [Google Scholar] [CrossRef]
- Kim, H. 10-Gb/s operation of RSOA using a delay interferometer. IEEE Photon. Technol. Lett. 2010, 22, 1379–1381. [Google Scholar] [CrossRef]
- Su, T.; Zhang, M.; Chen, X.; Zhang, Z.; Liu, M.; Liu, L.; Huang, S. Improved 10-Gbps uplink transmission in WDM-PON with RSOA-based colorless ONUs and MZI-based equalizers. Opt. Laser Technol. 2013, 51, 90–97. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, D.; Cao, Z.; Chen, X.; Huang, S. Suppression of pattern dependence in 10 Gbps upstream transmission of WDM-PON with RSOA-based ONUs. Opt. Commun. 2013, 308, 248–252. [Google Scholar] [CrossRef]
- Presi, M.; Chiuchiarelli, A.; Corsini, R.; Choudury, P.; Bottoni, F.; Giorgi, L.; Ciaramella, E. Enhanced 10 Gb/s operations of directly modulated reflective semiconductor optical amplifiers without electronic equalization. Opt. Express 2012, 20, B507–B512. [Google Scholar] [CrossRef] [Green Version]
- Rizou, Z.V.; Zoiros, K.E. Theoretical analysis of directly modulated reflective semiconductor optical amplifier performance enhancement by microring resonator-based notch filtering. Appl. Sci. 2018, 8, 223. [Google Scholar] [CrossRef] [Green Version]
- Zoiros, K.; Morel, P. Enhanced performance of semiconductor optical amplifier at high direct modulation speed with birefringent fiber loop. AIP Adv. 2014, 4, 077107. [Google Scholar] [CrossRef] [Green Version]
- Engel, T.; Rizou, Z.V.; Zoiros, K.E.; Morel, P. Semiconductor optical amplifier direct modulation with double-stage birefringent fiber loop. Appl. Phys. B 2016, 122, 158. [Google Scholar] [CrossRef]
- Zoiros, K.E.; Morel, P.; Hamze, M. Performance improvement of directly modulated semiconductor optical amplifier with filter-assisted birefringent fiber loop. Microw. Opt. Technol. Lett. 2015, 57, 2247–2251. [Google Scholar] [CrossRef]
- Duill, S.O.; Barry, L.P. Improved reduced models for single-pass and reflective semiconductor optical amplifiers. Opt. Commun. 2015, 334, 170–173. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, C.; Mecozzi, A.; Hu, Z.; Santagiustina, M. Analytic study of the modulation response of reflective semiconductor optical amplifiers. J. Light. Technol. 2015, 33, 4367–4376. [Google Scholar] [CrossRef]
- Rizou, Z.V.; Zoiros, K.E. Performance analysis and improvement of semiconductor optical amplifier direct modulation with assistance of microring resonator notch filter. Opt. Quantum Electron. 2017, 49, 119. [Google Scholar] [CrossRef]
- Rizou, Z.; Zoiros, K. SOA dynamics and pattern effects. In Handbook of Optoelectronic Device Modeling and Simulation: Fundamentals, Materials, Nanostructures, LEDs, and Amplifiers; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Papagiannakis, I.; Omella, M.; Klonidis, D.; Villa, J.A.L.; Birbas, A.N.; Kikidis, J.; Tomkos, I.; Prat, J. Design characteristics for a full-duplex IM/IM bidirectional transmission at 10 Gb/s using low bandwidth RSOA. J. Light. Technol. 2010, 28, 1094–1101. [Google Scholar] [CrossRef]
- Wei, J.; Hamié, A.; Giddings, R.; Tang, J. Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems. J. Light. Technol. 2009, 27, 3678–3688. [Google Scholar] [CrossRef]
- Gebrewold, S.A. Reflective Semiconductor Optical Amplifiers (RSOAs) as Colorless Sources in Access Networks. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2016. [Google Scholar]
- Rizou, Z.V.; Zoiros, K.E.; Hatziefremidis, A.; Connelly, M.J. Design analysis and performance optimization of a Lyot filter for semiconductor optical amplifier pattern effect suppression. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1–9. [Google Scholar] [CrossRef]
- Kashany-Mizrahi, I.; Sadot, D. Low-cost adaptive directly modulated optical OFDM based on semiconductor optical amplifier. Opt. Fiber Technol. 2013, 19, 501–506. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, T.T.; Wang, Q. Recent developments and applications of polarization-maintaining fiber loop mirrors. Instrum. Sci. Technol. 2012, 40, 239–261. [Google Scholar] [CrossRef]
- Kim, D.H.; Kang, J.U. Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity. Opt. Express 2004, 12, 4490–4495. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.W.; Tsang, H. Polarization-independent DPSK demodulation using a birefringent fiber loop. IEEE Photon. Technol. Lett. 2005, 17, 1313–1315. [Google Scholar] [CrossRef]
- Johnstone, W. Eye Diagrams & BER in Optical Communications BER (COM) Instructor Manual; OptoSci Ltd.: Glasgow, Scotland, 2010. [Google Scholar]
- de Valicourt, G.; Pommereau, F.; Poingt, F.; Lamponi, M.; Duan, G.; Chanclou, P.; Violas, M.; Brenot, R. Chirp reduction in directly modulated multi-electrode RSOA devices in passive optical networks. IEEE Photon. Technol. Lett. 2010, 22, 1425–1427. [Google Scholar] [CrossRef]
- Agrawal, G.P. Fiber-Optic Communication Systems; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 222. [Google Scholar]
- Säckinger, E. Broadband Circuits for Optical Fiber Communication; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- de Valicourt, G.; Brenot, R. 10 Gbit/s modulation of reflective SOA without any electronic processing. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 6–10 March 2011; p. OThT2. [Google Scholar]
- de Valicourt, G.; Violas, M.A.; Wake, D.; van Dijk, F.; Ware, C.; Enard, A.; Make, D.; Liu, Z.; Lamponi, M.; Duan, G.H.; et al. Radio-over-fiber access network architecture based on new optimized RSOA devices with large modulation bandwidth and high linearity. IEEE Trans. Microw. Theory 2010, 58, 3248–3258. [Google Scholar] [CrossRef]
- Cho, K.Y.; Hong, U.H.; Choi, H.; Chung, Y.C. Maximum operable speed of WDM PON employing bandwidth-limited RSOAs. Opt. Commun. 2014, 312, 159–162. [Google Scholar] [CrossRef]
- Vacondio, F.; Sisto, M.M.; Mathlouthi, W.; Rusch, L.A.; LaRochelle, S. Electrical-to-optical conversion of OFDM 802.11 g/a signals by direct current modulation of semiconductor optical amplifiers. In Proceedings of the 2006 International Topical Meeting on Microwave Photonics, Grenoble, France, 3–6 October 2006; pp. 1–4. [Google Scholar]
- Babić, J.P.; Totović, A.R.; Crnjanski, J.V.; Krstić, M.M.; Mašanović, M.L.; Gvozdić, D.M. Enhancement of the MQW-RSOA’s small-signal modulation bandwidth by inductive peaking. J. Light. Technol. 2019, 37, 1981–1989. [Google Scholar] [CrossRef]
- Rizou, Z.; Zoiros, K.; Houbavlis, T. Operating speed extension of SOA external modulator using microring resonator. In Proceedings of the Progress in Electromagnetics Research Symposium (PIERS), Prague, Czech Republic, 6–9 July 2015; pp. 2399–2402. [Google Scholar]
- Vardakas, J.; Zoiros, K.E. Performance investigation of all-optical clock recovery circuit based on Fabry-Pérot filter and semiconductor optical amplifier assisted Sagnac switch. Opt. Eng. 2007, 46, 085005. [Google Scholar]
- Hui, R.; O’Sullivan, M. Fiber Optic Measurement Techniques; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizou, Z.V.; Zoiros, K.E.; Rampone, T.; Sharaiha, A. Reflective Semiconductor Optical Amplifier Direct Modulation Capability Enhancement Using Birefringent Fiber Loop. Appl. Sci. 2020, 10, 5328. https://doi.org/10.3390/app10155328
Rizou ZV, Zoiros KE, Rampone T, Sharaiha A. Reflective Semiconductor Optical Amplifier Direct Modulation Capability Enhancement Using Birefringent Fiber Loop. Applied Sciences. 2020; 10(15):5328. https://doi.org/10.3390/app10155328
Chicago/Turabian StyleRizou, Zoe V., Kyriakos E. Zoiros, Thierry Rampone, and Ammar Sharaiha. 2020. "Reflective Semiconductor Optical Amplifier Direct Modulation Capability Enhancement Using Birefringent Fiber Loop" Applied Sciences 10, no. 15: 5328. https://doi.org/10.3390/app10155328
APA StyleRizou, Z. V., Zoiros, K. E., Rampone, T., & Sharaiha, A. (2020). Reflective Semiconductor Optical Amplifier Direct Modulation Capability Enhancement Using Birefringent Fiber Loop. Applied Sciences, 10(15), 5328. https://doi.org/10.3390/app10155328