Spectroscopic Characterization of Iron Slags from the Archaeological Sites of Brâncoveneşti, Călugăreni and Vătava Located on the Mureş County (Romania) Sector of the Roman Limes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Elemental Analysis
3.2. PXRD Analysis
3.3. FTIR Spectroscopy
3.4. EPR Investigation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pánczél, S.P.; Lenkey, L.; Pethe, M.; Laczkó, N. Updating our Knowledge about the Roman Fort from Brâncovenești, Mureș County. Marisia 2012, 32, 105–115. [Google Scholar]
- Pánczél, S.P.; Mustaţă, S.; Dobos, A. The Research at the Roman Auxiliary Fort of Mikháza/Călugăreni. Magy. Régészet/Hung. Archaeology 2018, 2018/1, 13–20. [Google Scholar]
- Dobos, A.; Fiedler, M.; Höpken, C.; Mustaţă, S.; Pánczél, S.P. Militärlager und vicus in Călugăreni/Mikháza (Kreis Mureş, Rumänien) am Dakischen Ostlimes. KuBA 2017, 7, 145–154. [Google Scholar]
- Szabó, M.; Pánczél, S.P.; Cioată, M.D. Római kori lelőhelyek kutatása a Kelemen-havasok lábánál. In Várak, Kastélyok, Templomok Évkönyv; Kósa, P., Ed.; Zöld Infó Média: Pécs, Hungary, 2017; pp. 116–119. [Google Scholar]
- Ingoglia, C.; Triscari, M.; Sabatino, G. Archaeometallurgy in Messina: Iron slag from a dig at block P, laboratory analyses and interpretation. MAA 2008, 8, 49–60. [Google Scholar]
- Scott, R.B.; Eekelers, K.; Degryse, P. Quantitative chemical analysis of archaeological slag material using handheld X-ray fluorescence spectrometry. Appl. Spectrosc. 2016, 70, 94–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemet, I.; Rončević, S.; Bugar, A.; Ferri, T.Z.; Pitarević, L. Classification analysis of archaeological findings from early-iron production (Turopolje region, NW Croatia) based on multi-analytical profiling. JAAS 2018, 33, 2053–2061. [Google Scholar] [CrossRef]
- Bitay, E.; Kacsó, I.; Pánczél, S.P.; Veress, E. Comparative Study of Roman Iron Slags Discovered in the Roman Auxiliary Fort and Settlement of Călugăreni. Acta Mat. Transyl. 2018, 1, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Lemiere, B. A review of pXRF (field portable X-ray fluorescence) applications for applied geochemistry. J. Geochem. Explor. 2018, 188, 350–363. [Google Scholar] [CrossRef] [Green Version]
- Hunt, A.M.; Speakman, R.J. Portable XRF analysis of archaeological sediments and ceramics. J.Archaeol. Sci. 2015, 53, 626–638. [Google Scholar] [CrossRef]
- Bačeva, K.; Stafilov, T.; Šajn, R.; Tănăselia, C.; Makreski, P. Distribution of chemical elements in soils and stream sediments in the area of abandoned Sb–As–Tl Allchar mine, Republic of Macedonia. Environ. Res. 2014, 133, 77–89. [Google Scholar] [CrossRef]
- Levei, E.; Frenţiu, T.; Ponta, M.; Tănăselia, C.; Borodi, G. Characterization and assessment of potential environmental risk of tailings stored in seven impoundments in the Aries river basin, Western Romania. Chem. Cent. J. 2013, 7, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitay, E.; Kacsó, I.; Toloman, D.; Pánczél, S.P.; Veress, E. EPR spectroscopic determination of the Fe(II)/Fe(III) ratio in roman slags from Brâncoveneşti (Marosvécs), Călugăreni (Mikháza) and Vătava (Felsőrépa), Romania. Papers Tech. Sci. 2017, 7, 103–106. [Google Scholar]
- Misra, M.K.; Ragland, K.W.; Baker, A.J. Wood ash composition as a function of furnace temperature. Biomass Bioenerg. 1993, 4, 103–116. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mishra, M.; Suganya, O.M. The incorporation of wood waste ash as a partial cement replacement material for making structural grade concrete: An overview. Ain Shams Eng. J. 2015, 6, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Griffith, D.A.; Johnson, D.L.; Hunt, A. The geographic distribution of metals in urban soils: The case of Syracuse, NY. GeoJournal 2009, 74, 275–291. [Google Scholar] [CrossRef]
- Al Maliki, A.; Al-lami, A.K.; Hussain, H.M.; Al-Ansari, N. Comparison between inductively coupled plasma and X-ray fluorescence performance for Pb analysis in environmental soil samples. Environ. Earth Sci. 2017, 76, 433. [Google Scholar] [CrossRef] [Green Version]
- Molnár, F. Salakok és fémek archeometriai vizsgálata. In Régészeti kézikönyv; Müller, R., Ed.; Magyar Régész Szövetség: Budapest, Hunagary, 2011; pp. 510–524. [Google Scholar]
- Charlton, M.F.; Blakelock, E.; Martinón-Torres, M.; Young, T. Investigating the production provenance of iron artifacts with multivariate methods. J. Archaeol. Sci. 2012, 39, 2280–2293. [Google Scholar] [CrossRef] [Green Version]
- Hauptmann, A. The investigation of archaeometallurgical slag. In Archaeometallurgy in Global Perspective. Methods and Syntheses; Roberts, B.W., Thornton, C.P., Eds.; Springer: New York, NY, USA, 2014; pp. 91–105. [Google Scholar]
- Andersson, D. Iron-working at Hornlandsudde: Archaeometallurgic analyses: Rogsta Parish, Hälsingland. In GAL Analysrapport 7-2007; Riksantikvarieämbetet, Avdelningen för arkeologiska undersökningar: Stockholm, Sweden, 2007; 12p. [Google Scholar]
- Kramar, S.; Lux, J.; Pristacz, H.; Mirtic, B.; Rogan-Smuc, N. Mineralogical and geochemical characterization of Roman slag from the archaeological site near Mosnje (Slovenia). Mater. Technol. (MTAEC9) 2015, 49, 343–348. [Google Scholar] [CrossRef]
- Mateus, A.; Pinto, A.; Alves, L.C.; Matos, J.X.; Figueiras, J.; Neng, N.R. Roman and modern slag at S. Domingos mine (IPB, Portugal): Compositional features and implications for their long-term stability and potential reuse. IJEWM 2011, 8, 133–159. [Google Scholar] [CrossRef]
- Sheikh, M.R.; Acharya, B.S.; Gartia, R.K. Characterization of iron slag of Kakching, Manipur by X-ray and optical spectroscopy. IJPAP 2010, 48, 632–634. [Google Scholar]
- Mohassab, Y.; Sohn, H.Y. Application of spectroscopic analysis techniques to the determination of slag structures and properties: Effect of water vapor on slag chemistry relevant to a novel flash ironmaking technology. JOM 2013, 65, 1559–1565. [Google Scholar] [CrossRef]
- McDonnell, J.G. A model for the formation of smithing slags. Mater. Archeol. 1991, 26, 23–26. [Google Scholar]
- Gotić, M.; Musić, S. Mössbauer, FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions. J. Mol. Struct. 2007, 834–836, 445–453. [Google Scholar] [CrossRef]
- Kramar, S.; Lux, J.; Mladenović, A.; Pristacz, H.; Mirtič, B.; Sagadin, M.; Rogan-Šmuc, N. Mineralogical and geochemical characteristics of Roman pottery from an archaeological site near Mošnje (Slovenia). Appl. Clay Sci. 2012, 57, 39–48. [Google Scholar] [CrossRef]
- Di Bella, M.; Aleo Nero, C.; Chiovaro, M.; Italiano, F.; Quartieri, S.; Romano, D.; Leonetti, F.; Marcianò, G.; Sabatino, G. Archaeometric study of the hellenistic metallurgy in Sicily: Mineralogical and chemical characterization of iron slags from punic Panormos (Palermo, Italy). MAA 2018, 18, 127–139. [Google Scholar]
- Merzbacher, C.I.; White, W.B. The structure of alkaline earth aluminosilicate glasses as determined by vibrational spectroscopy. J. Non-Cryst. Solids 1991, 130, 18–34. [Google Scholar] [CrossRef]
- ElBatal, H.A.; Ghoneim, N.A.; Ouis, M.A. Preparation and characterization of glass and glass-ceramics from industrial waste materials including iron slag and cement dust. In Proceedings of the ICCM-17–17th International Conference on Composite Materials, Edinburgh, UK, 27–31 July 2009; Available online: http://www.iccm-central.org/Proceedings/ICCM17proceedings/Themes/Industry/ADV%20COMP%20MATS%20IN%20CONSTRUCTION/INT%20-%20ADV%20COMP%20MATS%20IN%20CONSTR/IA1.2%20Ouis.pdf (accessed on 20 June 2020).
- Olovčić, A.; Memić, M.; Žero, S.; Huremović, J.; Kahrović, E. Chemical analysis of iron slags and metallic artefacts from early iron age. Int. Res. J. Pure Appl. Chem. 2014, 4, 859–870. [Google Scholar] [CrossRef]
- Kloprogge, J.T.; Wharton, D.; Hickey, L.; Frost, R.L. Infrared and Raman study of interlayer anions CO32−, NO3−, SO42− and ClO4− in Mg/Al-hydrotalcite. Am. Mineral. 2002, 87, 623–629. [Google Scholar] [CrossRef]
- Serneels, V.; Perret, S. Quantification of smithing activities based on the investigation of slag and other material remains. In Proceedings of the International Conference Archaeometallurgy in Europe, Milano, Italy, 24–26 September 2003; Associazione Italiana di Metallurgia: Milano, Italy, 2003; Volume 1, pp. 469–478. [Google Scholar]
- Prakash, C.; Husain, S.; Singh, R.J.; Mollah, S. Electron paramagnetic resonance of Fe3+ ions in Bi2O3–PbO–Fe2O3 glasses. J. Alloy. Compd. 2001, 326, 47–49. [Google Scholar] [CrossRef]
- Roessler, M.M.; Salvadori, E. Principles and applications of EPR spectroscopy in the chemical sciences. Chem. Soc. Rev. 2018, 47, 2534–2553. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Schmidt, M.P.; Stavitski, E.; Martínez, C.E. Iron speciation in peats: Chemical and spectroscopic evidence for the co-occurrence of ferric and ferrous iron in organic complexes and mineral precipitates. Org. Geochem. 2018, 115, 124–137. [Google Scholar] [CrossRef]
- Hofmeister, A.M.; Rossman, G.R. Determination of Fe3+ and Fe2+ concentrations in feldspar by optical absorption and EPR spectroscopy. Phys. Chem. Miner. 1984, 11, 213–224. [Google Scholar] [CrossRef]
- Koksharov, Y.A.; Pankratov, D.A.; Gubin, S.P.; Kosobudsky, I.D.; Beltran, M.; Khodorkovsky, Y.; Tishin, A.M. Electron paramagnetic resonance of ferrite nanoparticles. J. Appl. Phys. 2001, 89, 2293–2298. [Google Scholar] [CrossRef]
- Noginov, M.M.; Noginova, N.; Amponsah, O.; Bah, R.; Rakhimov, R.; Atsarkin, V.A. Magnetic resonance in iron oxide nanoparticles: Quantum features and effect of size. J. Magn. Magn. Mater. 2008, 320, 2228–2232. [Google Scholar] [CrossRef] [Green Version]
Site Location | Smallfind No. | Trench | Context | Fieldwork Year |
---|---|---|---|---|
Brâncoveneşti, retentura | 9487 | A | 1 | 2012 |
9454 | A | 3 | 2012 | |
9445 | A | 3 | 2012 | |
Călugăreni, vicus | 2008 | C | 2000 | 2013 |
2155 | C | 2001 | 2013 | |
2318 | C | 2005 | 2013 | |
2342 | C | 2005 | 2013 | |
2355 | C | 2009 | 2013 | |
2356 | C | 2009 | 2013 | |
4009 | C2 | 2039 | 2014 | |
4137 | C1 | 2034 | 2014 | |
4169 | C2 | 2039 | 2014 | |
4222 | C1 | 2038 | 2014 | |
4251 | C1 | 2035 | 2014 | |
4264 | C1 | 2038 | 2014 | |
Călugăreni, principia | 10218 | A2 | 109 | 2015 |
10532 | A5 | 250 | 2016 | |
10661 | A5 | 339 | 2016 | |
10673 | A | 346 | 2016 | |
11145 | A6 | 443 | 2017 | |
Vătava, East of the tower | Vat | V | 2014 |
Element | Iron Slag Samples | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
4137 | 4251 | 4264 | 4009 | 4169 | 4222 | 9487 | 9445 | 9454 | Vat | ||
C1/2034 | C1/2035 | C1/2038 | C2/2039 | C2/2039 | C1/2038 | A/1 | A/3 | A/3 | V | ||
Ca | LOD | 1380 | 1300 | 770 | 1995 | 1024 | 949 | 1054 | 2607 | 1464 | 637 |
Mean | 21,297 | 33,228 | 38,532 | 24,263 | 44,573 | 17,696 | 20,754 | 49,613 | 30,540 | 3730 | |
Min | 4107 | 24,077 | 30398 | 13,885 | 31,686 | 9693 | 11,256 | 36,136 | 24,470 | 3314 | |
Max | 53,444 | 43,160 | 78,283 | 29,904 | 52,852 | 24,236 | 33,382 | 62,790 | 36,910 | 4146 | |
SD | 27,862 | 9565 | 36,372 | 8999 | 11,310 | 7381 | 11,390 | 13,330 | 6230 | 588 | |
CV | 1.308 | 0.288 | 0.944 | 0.371 | 0.254 | 0.417 | 0.549 | 0.269 | 0.204 | 0.158 | |
Ti | LOD | 2011 | 1848 | 300 | 521 | 1958 | 1784 | 1643 | 1585 | 1801 | 1975 |
Mean | <LOD | <LOD | 5765 | 2399 | 2300 | 5070 | 3494 | <LOD | 2309 | 3255 | |
Min | 5321 | 1677 | 2292 | 4591 | 2547 | 1870 | 2692 | ||||
Max | 6356 | 3121 | 2307 | 5609 | 4441 | 2938 | 3684 | ||||
SD | 533 | 1021 | 11 | 512 | 1643 | 1801 | 1975 | ||||
CV | 0.092 | 0.426 | 0.005 | 0.101 | 0.470 | 0.780 | 0.607 | ||||
Mn | LOD | 150 | 232 | 51 | 146 | 140 | 114 | 95 | 84 | 108 | 110 |
Mean | 1199 | 5330 | 1245 | 1790 | 3700 | 1177 | 1563 | 640 | 1143 | 1360 | |
Min | 855 | 1814 | 707 | 1553 | 1484 | 978 | 1284 | 554 | 980 | 1190 | |
Max | 1822 | 7534 | 1823 | 2152 | 4968 | 1486 | 2120 | 793 | 1261 | 1464 | |
SD | 541 | 3078 | 559 | 319 | 1926 | 271 | 483 | 133 | 146 | 148 | |
CV | 0.451 | 0.577 | 0.449 | 0.178 | 0.521 | 0.230 | 0.309 | 0.208 | 0.128 | 0.109 | |
Fe | LOD | 13,278 | 12,882 | 1394 | 7608 | 15,265 | 11,285 | 9749 | 9593 | 11,140 | 15,686 |
Mean | 338,675 | 279,243 | 66,312 | 277,967 | 275,126 | 174,988 | 276,220 | 342,819 | 250,103 | 398,613 | |
Min | 288,777 | 267,913 | 44,686 | 177,197 | 243,677 | 119,587 | 193,649 | 322,470 | 242,344 | 363,707 | |
Max | 376,258 | 298,660 | 107,359 | 400,462 | 337,235 | 274,060 | 357,994 | 371,565 | 259,135 | 418,451 | |
SD | 45,022 | 16,893 | 35,557 | 113,207 | 53,790 | 85,999 | 82,175 | 25,602 | 8468 | 30,323 | |
CV | 0.133 | 0.060 | 0.536 | 0.407 | 0.196 | 0.491 | 0.297 | 0.075 | 0.034 | 0.076 | |
Sr | LOD | 10 | 9 | 7 | 10 | 8 | 8 | 8 | 23 | 13 | 8 |
Mean | 124 | 180 | 156 | 160 | 212 | 242 | 135 | 277 | 224 | 24 | |
Min | 44 | 133 | 133 | 107 | 163 | 86 | 95 | 122 | 173 | 22 | |
Max | 282 | 231 | 283 | 188 | 336 | 349 | 157 | 481 | 327 | 25 | |
SD | 137 | 49 | 78 | 46 | 109 | 138 | 35 | 185 | 89 | 2 | |
CV | 1.105 | 0.272 | 0.500 | 0.288 | 0.514 | 0.570 | 0.259 | 0.668 | 0.325 | 0.083 | |
Ba | LOD | 175 | 164 | 60 | 122 | 174 | 155 | 141 | 142 | 158 | 491 |
Mean | <LOD | 1529 | 432 | <LOD | 1423 | 775 | 722 | 654 | 912 | ||
Min | 1445 | 348 | 998 | 735 | 530 | 641 | 667 | ||||
Max | 1639 | 594 | 1699 | 814 | 1021 | 677 | 1111 | ||||
SD | 99 | 140 | 373 | 56 | 262 | 20 | 226 | ||||
CV | 0.065 | 0.324 | 0.262 | 0.072 | 0.363 | 0.031 | 0.248 |
Element | Iron Slag Samples | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
4137 | 4251 | 4264 | 4009 | 4169 | 4222 | 9487 | 9445 | 9454 | Vat | ||
C1/2034 | C1/2035 | C1/2038 | C2/2039 | C2/2039 | C1/2038 | A/1 | A/3 | A/3 | V | ||
Co | LOD | 105 | 108 | 17 | 66 | 148 | 105 | 93 | 90 | 108 | 217 |
Mean | 1117 | 589 | 92 | 583 | 1133 | 709 | 910 | 1515 | 848 | 2149 | |
Min | 972 | 285 | 53 | 424 | 982 | 405 | 463 | 1237 | 666 | 2025 | |
Max | 1359 | 949 | 169 | 858 | 1081 | 1117 | 1220 | 1912 | 1144 | 2285 | |
SD | 211 | 355 | 67 | 239 | 183 | 367 | 397 | 353 | 259 | 130 | |
CV | 0.189 | 0.603 | 0.728 | 0.410 | 0.162 | 0.518 | 0.436 | 0.233 | 0.305 | 0.060 | |
Cu | LOD | 101 | 100 | 14 | 78 | 127 | 107 | 26 | 48 | 22 | 76 |
Mean | <LOD | <LOD | <LOD | <LOD | 243 | 98 | <LOD | <LOD | <LOD | <LOD | |
Min | 239 | 76 | |||||||||
Max | 246 | 119 | |||||||||
SD | 5 | 30 | |||||||||
CV | 0.021 | 0.306 | |||||||||
Zn | LOD | 24 | 30 | 10 | 17 | 66 | 62 | 50 | 42 | 71 | 75 |
Mean | <LOD | 764 | 68 | <LOD | 131 | 164 | 94 | <LOD | 130 | <LOD | |
Min | 386 | 48 | 114 | 148 | 50 | 88 | |||||
Max | 1118 | 88 | 147 | 179 | 137 | 172 | |||||
SD | 367 | 20 | 23 | 22 | 62 | 59 | |||||
CV | 0.480 | 0.294 | 0.176 | 0.134 | 0.660 | 0.454 | |||||
As | LOD | 42 | 44 | 14 | 27 | 57 | 43 | 40 | 36 | 21 | 77 |
Mean | <LOD | <LOD | <LOD | <LOD | 28 | <LOD | <LOD | <LOD | <LOD | <LOD | |
Min | 27 | ||||||||||
Max | 29 | ||||||||||
SD | 1 | ||||||||||
CV | 0.036 | ||||||||||
Br | LOD | 7 | 6 | 4 | 6 | 8 | 6 | 8 | 7 | 9 | 11 |
Mean | 39 | 29 | <LOD | <LOD | <LOD | <LOD | <LOD | 35 | 29 | 46 | |
Min | 29 | 20 | 26 | 27 | 43 | ||||||
Max | 46 | 36 | 50 | 31 | 51 | ||||||
SD | 9 | 8 | 13 | 3 | 4 | ||||||
CV | 0.231 | 0.276 | 0.371 | 0.103 | 0.087 | ||||||
Rb | LOD | 8 | 7 | 5 | 5 | 10 | 8 | 7 | 16 | 8 | 13 |
Mean | 60 | 52 | 73 | 57 | 49 | 88 | 70 | 65 | 50 | 86 | |
Min | 50 | 49 | 62 | 38 | 39 | 78 | 44 | 53 | 33 | 80 | |
Max | 68 | 56 | 91 | 70 | 55 | 94 | 108 | 71 | 75 | 91 | |
SD | 9 | 4 | 16 | 17 | 9 | 9 | 34 | 11 | 22 | 6 | |
CV | 0.150 | 0.077 | 0.219 | 0.298 | 0.184 | 0.102 | 0.486 | 0.169 | 0.440 | 0.070 | |
Zr | LOD | 8 | 8 | 7 | 8 | 7 | 8 | 8 | 7 | 10 | 10 |
Mean | 57 | 97 | 185 | 122 | 81 | 137 | 122 | 33 | 126 | 100 | |
Min | 41 | 91 | 151 | 82 | 60 | 121 | 85 | 26 | 118 | 87 | |
Max | 72 | 101 | 214 | 142 | 96 | 147 | 192 | 40 | 134 | 115 | |
SD | 16 | 5 | 32 | 34 | 19 | 14 | 61 | 7 | 8 | 14 | |
CV | 0.281 | 0.052 | 0.173 | 0.279 | 0.235 | 0.102 | 0.500 | 0.212 | 0.063 | 0.140 | |
Mo | LOD | 23 | 22 | 41 | 20 | 25 | 22 | 20 | 20 | 24 | 35 |
Mean | 211 | 114 | <LOD | 88 | 139 | 108 | 136 | 194 | 114 | 293 | |
Min | 134 | 76 | 60 | 121 | 84 | 85 | 178 | 99 | 253 | ||
Max | 199 | 163 | 118 | 153 | 131 | 156 | 221 | 140 | 337 | ||
SD | 84 | 44 | 29 | 17 | 33 | 71 | 24 | 23 | 42 | ||
CV | 0.398 | 0.386 | 0.330 | 0.122 | 0.306 | 0.522 | 0.124 | 0.202 | 0.143 | ||
Au | LOD | 31 | 32 | 16 | 22 | 34 | 25 | 30 | 28 | 38 | 46 |
Mean | 46 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 43 | <LOD | 66 | |
Min | 44 | 36 | 59 | ||||||||
Max | 47 | 49 | 73 | ||||||||
SD | 2 | 9 | 10 | ||||||||
CV | 0.043 | 0.209 | 0.152 | ||||||||
Pb | LOD | 25 | 28 | 21 | 15 | 39 | 26 | 22 | 19 | 26 | 53 |
Mean | 442 | 316 | <LOD | 104 | 281 | 96 | 921 | 406 | 157 | 527 | |
Min | 359 | 122 | 56 | 160 | 67 | 75 | 214 | 105 | 485 | ||
Max | 534 | 673 | 164 | 393 | 119 | 2107 | 510 | 208 | 610 | ||
SD | 88 | 309 | 55 | 117 | 26 | 1058 | 167 | 52 | 72 | ||
CV | 0.199 | 0.978 | 0.529 | 0.416 | 0.271 | 1.149 | 0.411 | 0.331 | 0.137 | ||
Bi | LOD | 10 | 11 | 12 | 19 | 15 | 10 | 9 | 8 | 10 | 22 |
Mean | 119 | 33 | <LOD | 40 | 49 | <LOD | <LOD | 120 | 38 | 176 | |
Min | 52 | 29 | 34 | 36 | 75 | 27 | 163 | ||||
Max | 155 | 42 | 46 | 61 | 145 | 52 | 199 | ||||
SD | 58 | 12 | 8 | 18 | 39 | 13 | 20 | ||||
CV | 0.487 | 0.364 | 0.200 | 0.367 | 0.325 | 0.342 | 0.114 |
Element | Iron Slag Samples | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
4137 | 4251 | 4264 | 4009 | 4169 | 4222 | 9487 | 9445 | 9454 | Vat | |
C1/2034 | C1/2035 | C1/2038 | C2/2039 | C2/2039 | C1/2038 | A/1 | A/3 | A/3 | V | |
Major (lithophile) elements | ||||||||||
K | <LOD | <LOD | 9468 ± 1278 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Ca | 22,013 ± 1380 | 20,730 ± 1300 | 21,251 ± 770 | 44,499 ± 1995 | 12,968 ± 1024 | 13,638 ± 949 | 17,736 ± 1054 | 56,950 ± 2607 | 26,035 ± 1464 | 3582 ± 637 |
Ti | <LOD | <LOD | 4432 ± 300 | 3298 ± 521 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Mn | 2096 ± 150 | 4285 ± 232 | 1148 ± 51 | 2868 ± 146 | 1597 ± 140 | 1342 ± 114 | 974 ± 95 | 549 ± 84 | 1140 ± 108 | 546 ± 110 |
Fe | 299,949 ± 13,278 | 296,537 ± 12,882 | 52,900 ± 1394 | 202,134 ± 7608 | 336,825 ± 15,265 | 272,201 ± 11,285 | 246,979 ± 9749 | 241,312 ± 9593 | 265,946 ± 11,140 | 344,567 ± 15,686 |
Sr | 162 ± 10 | 131 ± 9 | 185 ± 7 | 197 ± 10 | 78 ± 8 | 110 ± 8 | 111 ± 8 | 607 ± 23 | 231 ± 13 | 35 ± 8 |
Ba | 982 ± 175 | 802 ± 164 | 315 ± 60 | 504 ± 122 | 721 ± 174 | 838 ± 155 | 782 ± 141 | 898 ± 142 | 932 ± 158 | <LOD |
Trace elements | ||||||||||
Co | 815 ± 105 | 730 ± 1088 | 102 ± 17 | 343 ± 66 | 1533 ± 148 | 1002 ± 105 | 898 ± 93 | 826 ± 90 | 530 ± 108 | 1138 ± 217 |
Cu | <LOD | <LOD | 55 ± 14 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Zn | 102 ± 24 | 227 ± 30 | 80 ± 10 | 70 ± 17 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
As | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | < LOD | 150 ± 21 | <LOD |
Br | 29 ± 7 | 34 ± 6 | 34 ± 4 | 28 ± 6 | 41 ± 8 | 24 ± 6 | 56 ± 8 | 22 ± 7 | 36 ± 9 | 61 ± 11 |
Rb | 54 ± 8 | 33 ± 7 | 97 ± 5 | 32 ± 5 | 72 ± 10 | 62 ± 8 | 54 ± 7 | <LOD | 50 ± 8 | 74 ± 13 |
Zr | 79 ± 8 | 73 ± 8 | 193 ± 7 | 119 ± 8 | 53 ± 7 | 80 ± 8 | 103 ± 8 | 27 ± 7 | 136 ± 10 | 76 ± 10 |
Mo | 154 ± 23 | 153 ± 22 | <LOD | 77 ± 20 | 210 ± 25 | 145 ± 22 | 106 ± 20 | 100 ± 20 | 171 ± 24 | 295 ± 35 |
Sn | <LOD | 219 ± 73 | <LOD | <LOD | <LOD | <LOD | 254 ± 67 | 193 ± 63 | <LOD | <LOD |
Pb | 154 ± 25 | 230 ± 28 | <LOD | 45 ± 15 | 402 ± 39 | 219 ± 26 | 154 ± 22 | 70 ± 19 | 156 ± 26 | 383 ± 53 |
Bi | 46 ± 10 | 74 ± 11 | <LOD | <LOD | 132 ± 15 | 53 ± 10 | 56 ± 9 | 42 ± 8 | 43 ± 10 | 146 ± 22 |
Element | Iron Slag Samples | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
4137 | 4251 | 4264 | 4009 | 4169 | 4222 | 9487 | 9445 | 9454 | Vat | |
C1/2034 | C1/2035 | C1/2038 | C2/2039 | C2/2039 | C1/2038 | A/1 | A/3 | A/3 | V | |
Major elements | ||||||||||
K | 1408.08 | 913.50 | 1982.75 | 984.88 | 209.88 | 627.52 | 720.45 | 264.74 | 585.83 | 296.72 |
Ca | Not determined | |||||||||
Ti | 280.14 | 294.44 | 553.48 | 509.61 | 50.57 | 133.33 | 149.85 | 76.75 | 156.53 | 64.67 |
Mn | 487.34 | 1401.13 | 138.83 | 824.49 | 186.59 | 141.40 | 107.52 | 55.13 | 147.38 | 37.25 |
Fe | 98,280.59 | 51,784.61 | 6301.41 | 23,665.16 | 39,406.19 | 29,227.91 | 26,011.80 | 30,914.23 | 39,863.00 | 43,669.51 |
Sr | 21.61 | 14.11 | 49.57 | 47.45 | 12.81 | 14.14 | 13.38 | 97.02 | 77.57 | 6.59 |
Ba | 1293.97 | 211.53 | 56.97 | 103.57 | 125.12 | 417.10 | 130.90 | 594.43 | 601.68 | 48.35 |
Trace elements | ||||||||||
Cr | 12.93 | 6.73 | 10.73 | 9.29 | 1.82 | 3.93 | 3.05 | 2.24 | 8.17 | 1.20 |
Co | 4.42 | 1.18 | 0.86 | 0.82 | 8.15 | 2.98 | 2.69 | 2.47 | 0.91 | 4.42 |
Ni | 15.37 | 8.56 | 7.60 | 9.31 | 3.02 | 3.42 | 3.01 | 59.52 | 13.72 | 1.01 |
Cu | 17.55 | 7.51 | 49.15 | 12.15 | 6.55 | 5.00 | 6.04 | 7.00 | 5.92 | 2.56 |
Zn | 22.51 | 25.13 | 13.06 | 11.99 | 2.27 | 2.12 | 2.55 | 6.39 | 9.41 | 0.10 |
As | 28.98 | 16.72 | 8.91 | 32.45 | 7.72 | 13.41 | 14.62 | 60.19 | 41.41 | 6.35 |
Br | Not determined | |||||||||
Rb | 4.07 | 2.33 | 11.33 | 1.97 | 9.70 | 6.64 | 3.72 | 1.47 | 3.64 | 8.72 |
Zr | 0.97 | 0.65 | 11.84 | 2.45 | 0.46 | 1.39 | 1.74 | 0.34 | 8.12 | 0.50 |
Mo | 1.63 | 1.80 | 0.14 | 1.31 | 4.56 | 3.08 | 0.98 | 0.81 | 3.71 | 5.60 |
Ag | 0.32 | 0.20 | 0.11 | 0.19 | 0.06 | 0.05 | 0.03 | 0.07 | 0.20 | <0.02 |
Cd | 0.12 | 0.08 | 0.01 | 0.05 | 0.05 | 0.04 | 0.02 | 0.04 | 0.05 | <0.02 |
Sn | 0.16 | 0.77 | 0.32 | 0.21 | 0.11 | 0.12 | 0.86 | 0.52 | 0.33 | 0.20 |
Sb | 0.25 | 0.18 | 0.02 | 0.13 | 0.56 | 0.17 | 0.13 | 0.05 | 0.07 | 0.03 |
I | 0.03 | <0.02 | 0.02 | 0.03 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 |
Pb | 2.18 | 2.72 | 0.17 | 0.81 | 10.33 | 2.29 | 1.98 | 0.67 | 1.99 | 4.81 |
Bi | <0.02 | 0.24 | 0.18 | 0.56 | 1.12 | 0.10 | <0.02 | 0.15 | 0.05 | 1.68 |
Mineral Phases | Iron Slag Sample | |||||
---|---|---|---|---|---|---|
4137 | 4264 | 9487 | 9445 | 9454 | Vat | |
C1/2034 | C1/2038 | A/1 | A/3 | A/3 | V1 | |
Quartz | ++++ | ++++ | ++++ | ++++ | ++++ | + |
Cristobalite | tr | tr | ++ | ++ | + | tr |
Goethite | +++ | tr | ++ | ++ | + | tr |
Magnetite | tr | + | nd | tr | tr | tr |
Hedenbergite | tr | tr | tr | nd | nd | nd |
Glassy phase | +++ | ++ | ++++ | +++ | + | +++ |
Absorption Frequencies (cm−1) | Assignments | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
4137 | 4251 | 4264 | 4009 | 4169 | 4222 | 9487 | 9445 | 9454 | Vat | |
C1/2034 | C2/2039 | C1/2038 | C2/2039 | C2/2039 | C1/2038 | A/1 | A/3 | A/3 | V | |
1631 | 1627 | 1630 | 1625 | 1620 | 1630 | 1631 | 1634 | 1630 | 1635 | FeO(OH) 1620–1635 |
1400 | 1394 | 1394 sh | 1396 | 1398 | 1401 | 1394 | 1400 w | 1399 sh | CO3 1390–1410 | |
1167 sh | 1166 sh | 1165 sh | 1167 sh | 1165 sh | SiO2 1165–1170 | |||||
1090 sh | 1094 sh | 1076 sh | 1087 sh | 1084 sh | 1080 sh | 1087 sh | 1091 sh | 1087 | SiO2 1076–1095 FeO(OH) 1105, 1084 Fe2O3 1100 | |
1026 | 1025 | 1045 | 1030 | 1029 | 1023 | 1032 | 1041 sh | 1030 | SiO2 1020–1050 | |
1007 sh | 991 sh | 944 s | SiO2 1010–940 | |||||||
908 | 906 sh | 913 | 908 | 913 sh | 913 | 910 sh | SiO2 910–915 | |||
876 | 875 | 882 | 890 | 883 | 871 sh | CO3 890–870 | ||||
824 m | FeO(OH) 824 | |||||||||
794 | 789 | 794 | 796 | 796 | 796 | 796 | 798 | 794 | SiO2 798–789 | |
776 | 778 | 779 | 778 | 778 | SiO2 780–775 | |||||
606 sh | 608 | 606 sh | Fe2O3 606–608 | |||||||
565 sh | 563 sh | 560 | FeO(OH) 560–565 | |||||||
524 sh | 524 | 524 | 526 | 526 sh | 519 | Fe2O3 520–526 | ||||
508 sh | Fe3O4 508 | |||||||||
469 | 467 | 469 | 467 | 471 | 469 | 467 | 466 | 470 | SiO2 466–470 | |
462 | 462 sh | SiO2 462 | ||||||||
428 | 435 | SiO2 428–435 | ||||||||
424 sh | 421 | 421 | 418 | 421 | SiO2 418–424 |
Sample | 108∙IFe(III) | 108∙IFe(tot) | 108∙IFe(II) | Fe3+/Fe2+ |
---|---|---|---|---|
9487 | 3.30 | 4.13 | 0.83 | 3.976 |
9445 | 0.23 | 1.05 | 0.82 | 0.280 |
9454 | 0.13 | 4.92 | 4.79 | 0.027 |
4137 | 0.61 | 5.60 | 4.98 | 0.122 |
4264 | 0.75 | 1.79 | 1.04 | 0.721 |
Vat | 2.52 | 3.88 | 1.36 | 1.853 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bitay, E.; Kacsó, I.; Tănăselia, C.; Toloman, D.; Borodi, G.; Pánczél, S.-P.; Kisfaludi-Bak, Z.; Veress, E. Spectroscopic Characterization of Iron Slags from the Archaeological Sites of Brâncoveneşti, Călugăreni and Vătava Located on the Mureş County (Romania) Sector of the Roman Limes. Appl. Sci. 2020, 10, 5373. https://doi.org/10.3390/app10155373
Bitay E, Kacsó I, Tănăselia C, Toloman D, Borodi G, Pánczél S-P, Kisfaludi-Bak Z, Veress E. Spectroscopic Characterization of Iron Slags from the Archaeological Sites of Brâncoveneşti, Călugăreni and Vătava Located on the Mureş County (Romania) Sector of the Roman Limes. Applied Sciences. 2020; 10(15):5373. https://doi.org/10.3390/app10155373
Chicago/Turabian StyleBitay, Enikő, Irina Kacsó, Claudiu Tănăselia, Dana Toloman, Gheorghe Borodi, Szilamér-Péter Pánczél, Zsombor Kisfaludi-Bak, and Erzsébet Veress. 2020. "Spectroscopic Characterization of Iron Slags from the Archaeological Sites of Brâncoveneşti, Călugăreni and Vătava Located on the Mureş County (Romania) Sector of the Roman Limes" Applied Sciences 10, no. 15: 5373. https://doi.org/10.3390/app10155373
APA StyleBitay, E., Kacsó, I., Tănăselia, C., Toloman, D., Borodi, G., Pánczél, S.-P., Kisfaludi-Bak, Z., & Veress, E. (2020). Spectroscopic Characterization of Iron Slags from the Archaeological Sites of Brâncoveneşti, Călugăreni and Vătava Located on the Mureş County (Romania) Sector of the Roman Limes. Applied Sciences, 10(15), 5373. https://doi.org/10.3390/app10155373