Flight Level Assignment Using Graph Coloring
Abstract
:1. Introduction
- We derive functions for the individual and social utilities, which we use later in the model (Section 2.1).
- We model the joint optimization of fuel consumption and flight level assignment as a factorized optimization problem (Section 2.2).
- We provide an approximate optimization solution to the problem as an instance of a wide class of coloring problems (Section 2.3).
2. Flight-Level Assignment as Spectrum Coloring Problem with Hard Constraints
2.1. Individual and Social Utility Models
2.1.1. Individual Utility Model: Fuel Consumption
2.1.2. Social Utility: Interference between Crossing Airways
2.2. Factorized Optimization Model
2.3. Graph Coloring Model
3. Experimental Evaluation
3.1. Graphs Used
3.2. Algorithms Used
- Create a list of available colors representing FLs (this depends mostly on whether it is a global or greedy approach).
- Iterate through the node’s neighbors (that is, all intersecting routes), and remove from the list of available colors all colors within separation .
- Once this process is done, if there are still colors available, one is chosen randomly.
- For the Greedy HC and Greedy SA: If none of the colors within the original range are available, the algorithm assigns the next closest available FL (i.e., if is the optimal FL for a given route and the original range is , then the algorithm will assign the first available FL out of etc.).
- If none of the 40 FLs are available, this means the current node cannot be changed.
3.3. Experimental Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ATM | Air Traffic Management |
ATC | Air Traffic Control |
FL | Flight Level |
SAR | Specific Air Range |
CI | Cost Index |
NM | Nautical Mile |
SA | Simulated Annealing |
HC | Hill-Climber |
References
- Vossen, T.W.M.; Hoffman, R.; Mukherjee, A. Air traffic flow management. In Quantitative Problem Solving Methods in The Airline Industry: A Modeling Methodology Handbook; Barnhart, C., Smith, B., Eds.; Springer Science + Business Media: Berlin/Heidelberg, Germany, 2012; pp. 387–455. [Google Scholar]
- Barnier, N.; Brisset, P. Graph Coloring for Air Traffic Flow Management. Ann. Oper. Res. 2004, 130, 163–178. [Google Scholar] [CrossRef] [Green Version]
- Malaguti, E.; Toth, P. A survey on vertex coloring problems. Int. Trans. Oper. Res. 2010, 17, 1–34. [Google Scholar] [CrossRef]
- Tuza, Z. Graph Coloring, Handbook of Graph Theory; Discrete Mathematics and Its Applications; CRC Press: Boca Raton, FL, USA, 2003; Volume 25, pp. 408–438. [Google Scholar]
- Orden, D.; Gimenez-Guzman, J.M.; Marsa-Maestre, I.; de la Hoz, E. Spectrum graph coloring and applications to WiFi channel assignment. Symmetry 2018, 10, 65. [Google Scholar] [CrossRef] [Green Version]
- Marsa-Maestre, I.; Gimenez-Guzman, J.M.; Orden, D.; de la Hoz, E.; Klein, M. REACT: REActive resilience for critical infrastructures using graph-Coloring Techniques. J. Netw. Comput. Appl. 2019, 145, 102402. [Google Scholar] [CrossRef] [Green Version]
- dal Sasso, V.; Djeumou, F.; Lulli, G.; Zografos, K.G. Planning efficient 4D trajectories in Air Traffic Flow Management. Eur. J. Oper. Res. 2019, 276, 676–687. [Google Scholar] [CrossRef]
- Steinegger, R. Fuel Economy as Function of Weight and Distance. 2017. Zurcher Fachhochschule. Available online: https://digitalcollection.zhaw.ch/bitstream/11475/1896/2/Steinegger_Fuel_Economy_for_Aircraft_Operation_as_a_Function_of_Weight_and_Distance_v1-0.pdf (accessed on 4 April 2020).
- Alizadeh, A.; Uzun, M.; Koyuncu, E. Optimal Trajectory Planning based on Wind-Optimal Cost Index. In Proceedings of the 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, GA, USA, 25–29 June 2018. [Google Scholar]
- Dalmau, R.; Prats, X. Fuel and time savings by flying continuous cruise climbs: Estimating the benefit pools for maximum range operations. Transp. Res. Part Transp. Environ. 2015, 35, 62–71. [Google Scholar] [CrossRef]
- Turgut, E.T.; Usanmaz, O.; Cavcar, M.; Dogeroglu, T.; Armutlu, K. Effects of Descent Flight-Path Angle on Fuel Consumption of Commercial Aircraft. J. Aircr. 2018, 56, 313–323. [Google Scholar] [CrossRef]
- Constans, S.; Gadenne, N.; Fondacci, R. Applying genetic techniques to the tactical flight level assignment. In Proceedings of the 16th Mini-EURO Conference and 10th Meeting of EWGT Proceedings, Poznan, Poland, 13–16 September 2005. [Google Scholar]
- Gimenez-Guzman, J.M.; Marsa-Maestre, I.; Orden, D.; de la Hoz, E.; Ito, T. On the goodness of using orthogonal channels in WLAN IEEE 802.11 in realistic scenarios. Wirel. Commun. Mob. Comput. 2018, 2018, 5742712. [Google Scholar] [CrossRef] [Green Version]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A New Heuristic Optimization Algorithm: Harmony Search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- De la Hoz, E.; Gimenez-Guzman, J.M.; Marsa-Maestre, I.; Orden, D. Automated negotiation for resource assignment in wireless surveillance sensor networks. Sensors 2015, 15, 29547–29568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]
- de la Hoz, E.; Marsa-Maestre, I.; Gimenez-Guzman, J.M.; Orden, D.; Klein, M. Multi-Agent Nonlinear Negotiation for Wi-Fi Channel Assignment. In Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, São Paulo, Brazil, 8–12 May 2017; pp. 1035–1043. [Google Scholar]
- Jansen, P.W.; Perez, R.E. Constrained Structural Design Optimization via a Parallel Augmented Lagrangian Particle Swarm Optimization Approach. Comput. Struct. 2011, 89, 1352–1366. [Google Scholar] [CrossRef]
- Camacho-Gómez, C.; Marsa-Maestre, I.; Gimenez-Guzman, J.M.; Salcedo-Sanz, S. A Coral Reefs Optimization algorithm with substrate layer for robust Wi-Fi channel assignment. Soft Comput. 2019, 23, 12621–12640. [Google Scholar] [CrossRef]
- Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J.A. The coral reefs optimization algorithm: A novel metaheuristic for efficiently solving optimization problems. Sci. World J. 2014, 2014, 739768. [Google Scholar] [CrossRef] [PubMed]
- Aarts, E.; Korst, J.; Michiels, W. Simulated annealing. In Search Methodologies; Springer: Boston, MA, USA, 2005; pp. 187–210. [Google Scholar]
- Lang, F.; Fink, A. Learning from the metaheuristics: Protocols for automated negotiations. Group Decis. Negot. 2015, 24, 299–332. [Google Scholar] [CrossRef]
- Klein, M.; Faratin, P.; Sayama, H.; Bar-Yam, Y. Negotiating complex contracts. Group Decis. Negot. 2003, 12, 111–125. [Google Scholar] [CrossRef]
- Mirosavljevic, P.; Gvozdenovic, S.; Vasov, L. The Transport Aircraft Minimum Pollution Climb Schedule. Fme Trans. 2013, 41, 11–24. [Google Scholar]
- Lovegren, J.A.; Hansman, R.J. Estimation of Potential Aircraft Fuel Burn Reduction in Cruise via Speed and Altitude Optimization Strategies; MIT International Center for Air Transportation: Cambridge, MA, USA, 2011; Available online: https://dspace.mit.edu/bitstream/handle/1721.1/62196/Lovegren_ICAT-2011.pdf (accessed on 4 April 2020).
- Airbus. Flight Operations Support & Line Assistance. Getting to Grips with the Cost Index: Issue II. Airbus Customer Services. 1998. Available online: https://ansperformance.eu/library/airbus-cost-index.pdf (accessed on 6 September 2019).
- Burzlaff, M. Aircraft Fuel Consumption; HAW Hamburg: Hamburg, Germany, 2017; Available online: https://www.fzt.haw-hamburg.de/pers/Scholz/arbeiten/LandingBurzlaff.html (accessed on 29 February 2020).
- Martínez-Moraian, A.; Orden, D.; Gimenez-Guzman, J.M.; Marsa-Maestre, I. Using spectrum graph coloring in air traffic management. In Proceedings of the XVIII Spanish Meeting on Computational Geometry, Girona, Spain, 1–3 July 2019. [Google Scholar]
- Marsa-Maestre, I.; de la Hoz, E.; Gimenez-Guzman, J.M.; Orden, D.; Klein, M. Nonlinear Negotiation Approaches for Complex-Network Optimization: A Study Inspired by Wi-Fi Channel Assignment. Group Decis. Negot. 2019, 28, 175–196. [Google Scholar] [CrossRef] [Green Version]
- Calamoneri, T. The L(h,k)-labelling problem: An updated survey and annotated bibliography. Comput. J. 2011, 54, 1344–1371. [Google Scholar] [CrossRef] [Green Version]
- Patokallio, J. OpenFlights Data. 2014. Available online: http://openflights.org/data.html (accessed on 6 August 2020).
- NetworkX—Network Analysis in Python. Available online: https://networkx.github.io/ (accessed on 31 August 2020).
- Marsa-Maestre, I.; Gimenez-Guzman, J.M.; de la Hoz, E.; Orden, D. Competitive Belief Propagation to Efficiently Solve Complex Multi-agent Negotiations with Network Structure. In Proceedings of the International Conference on Autonomous Agents and Multiagent Systems, São Paulo, Brazil, 8–12 May 2017; pp. 1–16. [Google Scholar]
- Tan, Q.; Wang, Z.; Ong, Y.; Low, K.H. Evolutionary Optimization-based Mission Planning for UAS Traffic Management (UTM). In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019; pp. 952–958. [Google Scholar]
- Jain, S.; Biyani, P. Improved Real Time Ride Sharing via Graph Coloring. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019. [Google Scholar]
FL (100 s ft) | Fuel (kg) | |
---|---|---|
200 | 600 | n/a |
240 | 710 | 2.75 |
280 | 820 | 2.75 |
300 | 875 | 2.75 |
320 | 940 | 3.25 |
FL (100 s ft) | % Off from Optimum SAR | |
---|---|---|
300 | −12 | n/a |
320 | −8 | 0.2 |
340 | −4 | 0.2 |
360 | −1.5 | 0.125 |
380 | 0 | 0.075 |
400 | −3 | 0.15 |
FL Use | FLs Used | FL Separation | ||||
---|---|---|---|---|---|---|
Mean | Std Dev | Mean | Std Dev | Mean | Std Dev | |
SA Global | 261.82 | 652.78 | 19.30 | 0.90 | 1.37 | 0.03 |
SA Greedy | 288.00 | 825.16 | 16.70 | 1.05 | 1.14 | 0.01 |
HC Global | 250.43 | 629.56 | 19.35 | 0.96 | 1.38 | 0.04 |
HC Greedy | 320.00 | 871.28 | 15.45 | 0.59 | 1.15 | 0.01 |
FL use | FLs used | FL separation | ||||
---|---|---|---|---|---|---|
Mean | Std Dev | Mean | Std Dev | Mean | Std Dev | |
SA Global | 250.43 | 183.46 | 21.55 | 0.59 | 6.03 | 0.35 |
SA Greedy | 221.54 | 168.50 | 23.60 | 1.16 | 7.61 | 0.27 |
HC Global | 261.82 | 178.75 | 21.60 | 0.58 | 6.14 | 0.22 |
HC Greedy | 213.33 | 170.51 | 23.75 | 0.89 | 7.59 | 0.35 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gimenez-Guzman, J.M.; Martínez-Moraian, A.; Reyes-Bardales, R.D.; Orden, D.; Marsa-Maestre, I. Flight Level Assignment Using Graph Coloring. Appl. Sci. 2020, 10, 6157. https://doi.org/10.3390/app10186157
Gimenez-Guzman JM, Martínez-Moraian A, Reyes-Bardales RD, Orden D, Marsa-Maestre I. Flight Level Assignment Using Graph Coloring. Applied Sciences. 2020; 10(18):6157. https://doi.org/10.3390/app10186157
Chicago/Turabian StyleGimenez-Guzman, Jose Manuel, Alejandra Martínez-Moraian, Rene D. Reyes-Bardales, David Orden, and Ivan Marsa-Maestre. 2020. "Flight Level Assignment Using Graph Coloring" Applied Sciences 10, no. 18: 6157. https://doi.org/10.3390/app10186157
APA StyleGimenez-Guzman, J. M., Martínez-Moraian, A., Reyes-Bardales, R. D., Orden, D., & Marsa-Maestre, I. (2020). Flight Level Assignment Using Graph Coloring. Applied Sciences, 10(18), 6157. https://doi.org/10.3390/app10186157