Design of an Electrically Small, Planar Quasi-Isotropic Antenna for Enhancement of Wireless Link Reliability under NLOS Channels
Abstract
:1. Introduction
2. Antenna Design
3. Fabrication and Measurements
4. Link Reliability Evaluation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Park, P.; Ergen, S.C.; Fischione, C.; Lu, C.; Johansson, K.H. Wireless Network Design for Control Systems: A Survey. IEEE Commun. Surv. Tutor. 2018, 20, 978–1013. [Google Scholar] [CrossRef]
- Ma, Z.; Xiao, M.; Xiao, Y.; Pang, Z.; Poor, H.V.; Vucetic, B. High-Reliability and Low-Latency Wireless Communication for Internet of Things: Challenges, Fundamentals, and Enabling Technologies. IEEE Internet Things J. 2019, 6, 7946–7970. [Google Scholar] [CrossRef]
- Luvisotto, M.; Pang, Z.; Dzung, D. High-Performance Wireless Networks for Industrial Control Applications: New Targets and Feasibility. Proc. IEEE 2019, 107, 1074–1093. [Google Scholar] [CrossRef]
- Park, P. Markov chain model of fault-tolerant wireless networked control systems. Wirel. Netw. 2019, 25, 2291–2303. [Google Scholar] [CrossRef]
- Tang, L.; Wang, K.; Huang, Y.; Gu, F. Channel Characterization and Link Quality Assessment of IEEE 802.15.4-Compliant Radio for Factory Environments. IEEE Trans. Ind. Inform. 2007, 3, 99–110. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Q.; Zhang, W.; Shen, F.; Loh, T.H.; Qin, F. Understanding the Temporal Fading in Wireless Industrial Networks: Measurements and Analyses. In Proceedings of the 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 18–20 October 2018; pp. 1–6. [Google Scholar]
- Alexandra, E.; Novotny, D.R.; Candell, R.; Koepke, G.H.; Papazian, P.B.; Remley, C.A. Fading due to static and dynamic features in a factory environment on wireless channels, NIST. IEEE Veh. Technol. Manag. 2018. Available online: https://pdfs.semanticscholar.org/6f5a/3f075837771342fa72e1ec977fdb24799247.pdf (accessed on 28 July 2020).
- Bombino, A.; Grimaldi, S.; Mahmood, A.; Gidlund, M. Machine Learning-Aided Classification Of LoS/NLoS Radio Links In Industrial IoT. In Proceedings of the 2020 16th IEEE International Conference on Factory Communication Systems (WFCS), Porto, Portugal, 27–29 April 2020; pp. 1–8. [Google Scholar]
- Liu, Z.-Y.; Guo, L.-X.; Li, C.-L. Effects of antenna polarization on power and RMS delay spread in LOS/OOS indoor radio channel. In Proceedings of the 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, China, 16–23 August 2014; pp. 1–4. [Google Scholar]
- Bou-El-Harmel, A.; Benbassou, A.; Belkadid, J.; Mechatte, N. Effect of Quasi-Isotropic Antenna Orientation on Indoor Multipath Propagation Characteristics in RSN Applications. Int. J. Antennas Propag. 2017, 2017, 2686123. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, L.E.J. On Continuous Vector Distribution on Surfaces; 3rd communication; in KNAW, Proceedings, 13 I, 1910, Amsterdam; KNAW: Trippenhuis, Amsterdam, The Netherlands, 1910; pp. 171–186. [Google Scholar]
- Mathis, H.F. A short proof that an isotropic antenna is impossible. Proc. IRE 1951, 8, 970. [Google Scholar]
- Matzner, H.; Milgrom, M.; Shtrikman, S. A study of finite size power isotropic radiators. In Proceedings of the Eighteenth Convention of Electrical and Electronics Engineers in Israel, Tel Aviv, Israel, 7–8 March 1995; pp. 1.4.1/1–1.4.1/5. [Google Scholar]
- Pan, Y.; Leung, K.W.; Lu, K. Compact Quasi-Isotropic Dielectric Resonator Antenna With Small Ground Plane. IEEE Trans. Antennas Propag. 2014, 62, 577–585. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, X.; Chen, W.; Feng, Z.; Iskander, M.F. Study of Conformal Switchable Antenna System on Cylindrical Surface for Isotropic Coverage. IEEE Trans. Antennas Propag. 2011, 59, 776–783. [Google Scholar] [CrossRef]
- Long, S. A combination of linear and slot antennas for quasi-isotropic coverage. IEEE Trans. Antennas Propag. 1975, 23, 572–576. [Google Scholar] [CrossRef]
- Kim, J.; Nam, S. A Compact Quasi-Isotropic Antenna Based on Folded Split-Ring Resonators. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 294–297. [Google Scholar] [CrossRef]
- Radha, S.M.; Shin, G.; Park, P.; Yoon, I.-J. Realization of Electrically Small, Low-Profile Quasi-Isotropic Antenna Using 3D Printing Technology. IEEE Access 2020, 8, 27067–27073. [Google Scholar] [CrossRef]
- Su, Z.; Klionovski, K.; Bilal, R.M.; Shamim, A. A Dual Band Additively Manufactured 3-D Antenna on Package With Near-Isotropic Radiation Pattern. IEEE Trans. Antennas Propag. 2018, 66, 3295–3305. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, J.; Pan, Y.M.; Zheng, S.Y.; Hu, P.F. An Electrically Small Planar Quasi-Isotropic Antenna. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 303–306. [Google Scholar] [CrossRef]
- Deng, C.; Li, Y.; Zhang, Z.; Feng, Z. A Wideband Isotropic Radiated Planar Antenna Using Sequential Rotated L-Shaped Monopoles. IEEE Trans. Antennas Propag. 2014, 62, 1461–1464. [Google Scholar] [CrossRef]
- Pan, G.; Li, Y.; Zhang, Z.; Feng, Z. Isotropic Radiation From a Compact Planar Antenna Using Two Crossed Dipoles. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1338–1341. [Google Scholar]
- Imran Hussain Shah, S.; Tentzeris, M.M.; Lim, S. Planar quasi-isotropic antenna for drone communication. Microw. Opt. Technol. Lett. 2018, 60, 1290–1295. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.; Omar, A.A.; Hong, W. A Symmetrically-Stacked Planar Antenna Concept Exhibiting Quasi-Isotropic Radiation Coverage. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1390–1394. [Google Scholar] [CrossRef]
- Luo, J.W.; Pan, Y.M.; Zheng, S.Y.; Wang, S.H. A Planar Angled-Dipole Antenna With Quasi-Isotropic Radiation Pattern. IEEE Trans. Antennas Propag. 2020, 68, 5646–5651. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, M.; Chen, S.; Li, L.; Li, D.; Hu, K.; Li, M. Design of Low-Cost, Flexible, Uniplanar, Electrically Small, Quasi-Isotropic Antenna. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1646–1650. [Google Scholar] [CrossRef]
- Ko, D.-O.; Woo, J.-M. Design of a Small Radio Frequency Identification Tag Antenna Using a Corrugated Meander Line Applicable to a Drug Runout Sensor System. J. Electromagn Eng. Sci. 2018, 18, 7–12. [Google Scholar] [CrossRef]
- Kedze, K.E.; Wang, H.; Park, I. Effects of Split Position on the Performance of a Compact Broadband Printed Dipole Antenna with Split-Ring Resonators. J. Electromagn Eng. Sci. 2019, 19, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Shin, G.; Radha, S.M.; Choi, J.; Yoon, I.-J. Low-Profile, Electrically Small Planar Huygens Source Antenna With an Endfire Radiation Characteristic. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 412–416. [Google Scholar] [CrossRef]
- Ta, S.X.; Park, I.; Ziolkowski, R.W. Crossed Dipole Antennas: A review. IEEE Antennas Propag. Mag. 2015, 57, 107–122. [Google Scholar] [CrossRef]
- Tang, M.; Wang, H.; Ziolkowski, R.W. Design and Testing of Simple, Electrically Small, Low-Profile, Huygens Source Antennas With Broadside Radiation Performance. IEEE Trans. Antennas Propag. 2016, 64, 4607–4617. [Google Scholar] [CrossRef]
- Zolertia RE-Mote Revision B Internet of Things Hardware Development Platform, for 2.4-GHz and 863-950MHz IEEE 802.15.4, 6LoWPAN and ZigBee Applications. Zolertia. Available online: https://github.com/Zolertia/Resources/wiki/Zolertia-Technical-documentation (accessed on 28 July 2020).
- Dunkels, A.; Gronvall, B.; Voigt, T. Contiki-a lightweight and flexible operating system for tiny networked sensors. In Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks, Tampa, FL, USA, 16–18 November 2004; pp. 455–462. [Google Scholar]
Parameter (mm) | h = 0.32 | h = 0.72 | h = 1.12 |
---|---|---|---|
Frequency (GHz) | 2.30 | 2.45 | 2.51 |
Gain deviation (dB) | 2.66 | 3.01 | 3.09 |
Radiation Efficiency (%) | 81.3 | 82.6 | 88.6 |
Parameter | Value | Parameter | Value |
---|---|---|---|
M1 | 8.4 | W3 | 2.4 |
M2 | 13.8 | W4 | 2 |
M3 | 12.1 | W5 | 3.15 |
M4 | 6.7 | r | 9.25 |
W1 | 2.2 | h | 0.72 |
W2 | 2 | α | 271.06º |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radha, S.M.; Jung, M.; Park, P.; Yoon, I.-J. Design of an Electrically Small, Planar Quasi-Isotropic Antenna for Enhancement of Wireless Link Reliability under NLOS Channels. Appl. Sci. 2020, 10, 6204. https://doi.org/10.3390/app10186204
Radha SM, Jung M, Park P, Yoon I-J. Design of an Electrically Small, Planar Quasi-Isotropic Antenna for Enhancement of Wireless Link Reliability under NLOS Channels. Applied Sciences. 2020; 10(18):6204. https://doi.org/10.3390/app10186204
Chicago/Turabian StyleRadha, Sonapreetha Mohan, Mingyu Jung, Pangun Park, and Ick-Jae Yoon. 2020. "Design of an Electrically Small, Planar Quasi-Isotropic Antenna for Enhancement of Wireless Link Reliability under NLOS Channels" Applied Sciences 10, no. 18: 6204. https://doi.org/10.3390/app10186204
APA StyleRadha, S. M., Jung, M., Park, P., & Yoon, I. -J. (2020). Design of an Electrically Small, Planar Quasi-Isotropic Antenna for Enhancement of Wireless Link Reliability under NLOS Channels. Applied Sciences, 10(18), 6204. https://doi.org/10.3390/app10186204