Selected Physical and Mechanical Properties of Microwave Heat Treated Rubberwood (Hevea brasiliensis)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tumen, I.; Aydemir, D.; Gündüz, G.; Uner, B.; Cetin, H. Changes in the chemical structure of thermally treated wood. Bioresources 2010, 5, 1936–1944. [Google Scholar]
- Pétrissans, M.; Pétrissans, A.; Gérardin, P. Pore size diameter, shrinkage and specific gravity evolution during the heat treatment of wood. Innov. Woodwork. Ind. Eng. Des. 2013, 3, 18–24. [Google Scholar]
- Taghiyari, H.R.; Esmailpour, A.; Adamopoulos, S.; Zereshki, K.; Hosseinpourpia, R. Shear strength of heat-treated solid wood bonded with polyvinyl-acetate reinforced by nanowollastonite. Wood Res. 2020, 65, 183–194. [Google Scholar] [CrossRef]
- Kocaefe, D.; Poncsak, S.; Boluk, Y. Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. Bioresources 2008, 3, 517–537. [Google Scholar]
- Candelier, K.; Thevenon, M.F.; Petrissans, A.; Dumarcay, S.; Gerardin, P.; Petrissans, A. Control of wood thermal and its effects on decay resistance: A review. Ann. For. Sci. 2016, 73, 571–583. [Google Scholar] [CrossRef] [Green Version]
- Yildiz, S.; Gezer, D.; Yildiz, U.C. Mechanical and chemical behavior of spruce wood modified by heat. Build. Environ. 2006, 41, 1762–1766. [Google Scholar] [CrossRef]
- Poncsak, S.; Kocaefe, D.; Bouazara, M.; Pichette, A. Effect of high temperature treatment on the mechanical properties of birch. Wood Sci. Technol. 2006, 40, 467–668. [Google Scholar] [CrossRef]
- Boonstra, M.J.; Tjeerdsma, B. Chemical analysis of heat treated softwoods. Holz Roh Werkst. 2006, 64, 204–211. [Google Scholar] [CrossRef]
- Hiziroglu, S. Fundamental aspects of heat treated wood. Fact Sheet 2019, 2. Available online: www.fapc.biz (accessed on 3 August 2020).
- Dilik, T.; Hiziroglu, S. Bonding strength of heat treated compressed Eastern redcedar wood. Mater. Des. 2012, 42, 317–320. [Google Scholar] [CrossRef]
- Shi, J.L.; Kocaefe, D.; Zhang, J. Mechanical behaviour of Québec wood species heat-treated using ThermoWood process. Holz Roh Werkst. 2007, 65, 255–259. [Google Scholar] [CrossRef]
- Ozcan, S.; Ozcifci, A.; Hiziroglu, S.; Toker, H. Effects of heat treatment and surface roughness on bonding strength. Constr. Build. Mater. 2012, 33, 7–13. [Google Scholar] [CrossRef]
- Esteves, B.M.; Pereira, H.M. Wood modification by heat treatment: A review. BioResources 2009, 4, 370–404. [Google Scholar]
- Korkut, S.; Kök, M.S.; Korkut, D.S.; Gürleyen, T. The effects of heat treatment on technological properties in red-bud maple (Acer trautvetteri Medw.) wood. BioResources Technol. 2008, 99, 1538–1543. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.A. Mechanical behaviour of Eucalyptus wood modified by heat. Wood Sci. Technol. 2000, 34, 39–43. [Google Scholar] [CrossRef]
- Hill, C. Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons, Ltd.: Hoboken, NY, USA, 2006. [Google Scholar]
- Bakar, B.; Hiziroglu, S.; Tahir, P.M. Properties of some thermally modified wood.species. Mater. Des. 2013, 43, 348–355. [Google Scholar] [CrossRef] [Green Version]
- Ulker, O.; Aslanova, F.; Hiziroglu, S. Properties of thermally treated yellow poplar, Southern pine, and Eastern redcedar. BioResources 2018, 13, 7726–7737. [Google Scholar] [CrossRef]
- Bekhta, P.; Niemz, P. Effect of high temperature on the change in dimensional stability and mechanical properties of spruce wood. Holzforschung 2003, 57, 539–546. [Google Scholar] [CrossRef]
- Boonstra, M.J.; van Acker, J.; Tjeerdsma, B.; Kegal, E. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann. For. Sci. 2007, 64, 679–690. [Google Scholar] [CrossRef] [Green Version]
- Kocaefe, D.; Poncsak, S.; Tang, J.; Bouazara, M. Effect of heat treatment on the mechanical properties of North American Jack pine: Thermogravimetric study. J. Mater. Sci. 2009, 45, 681–687. [Google Scholar] [CrossRef]
- González-Peña, M.; Breese, M.; Hill, C. Hygroscopicity in heat-treated wood: Effect of extractives. In Proceedings of the International Conference on Environmentally Compatible Forest Products (ICECFOP), Oporto, Portugal, 22–24 September 2004; pp. 105–119. [Google Scholar]
- Torgovnikov, G.; Vinden, P. Microwave wood modification technology and its.applications. For. Prod. J. 2010, 60, 173–182. [Google Scholar]
- Torgovnikov, G.; Vinden, P. High-intensity microwave wood modification for increasing permeability. For. Prod. J. 2009, 59, 1–9. [Google Scholar]
- Harris, G.A.; Torgovnikov, G.; Vinden, P.; Brodie, G.I.; Shaginov, A. Microwave Pretreatment of Backsawn Messmate Boards to Improve Drying Quality: Part 1. Dry. Technol. 2008, 26, 579–584. [Google Scholar] [CrossRef]
- Ratnasingam, J.; Ioras, F. Effect of heat treatment on the machining and other properties of rubberwood. European. J. Wood Prod. 2012, 70, 759–761. [Google Scholar] [CrossRef]
- Teoh, Y.P.; Don, M.M.; Ujang, S. Assessment of the properties, utilization, and preservation of rubberwood (Hevea brasiliensis): A case study in Malaysia. J. Wood Sci. 2011, 57, 255–266. [Google Scholar] [CrossRef]
- ASTM D 143–14. Standard Test Methods for Small Clear Specimens of Timber; Street: Washington, DC, USA, 2010. [Google Scholar]
- Priadi, T.; Hiziroglu, S. Characterization of heat treated wood species. Mater. Des. 2013, 49, 575–582. [Google Scholar] [CrossRef]
- Chotikhun, A.; Hiziroglu, S. Measurement of dimensional stability of heat treated southern red oak (Quercus falcata Michx.). Measurement 2016, 87, 99–103. [Google Scholar] [CrossRef]
- Priadi, T.; Suharjo, A.C.; Karlinasari, L. Dimensional stability and color change of heat treated young teak wood. Int. Wood Prod. J. 2019, 10, 119–125. [Google Scholar] [CrossRef]
- Giebeler, E. Dimensional stability of wood through warm pressure treatment. Holz Roh Werkst. 1983, 41, 87–94. [Google Scholar] [CrossRef]
Temperature (°C) | Swelling in Water Soaking (%) | |||||
---|---|---|---|---|---|---|
2-h | 24-h | |||||
Radial | Tangential | Longitudinal | Radial | Tangential | Longitudinal | |
0 | 1.60 (0.38) | 1.86 (0.47) | 0.24 (0.07) | 2.67 (0.49) | 2.96 (0.56) | 0.44 (0.05) |
150 | 0.562 (0.23) | 0.988 (0.17) | 0.23 (0.05) | 2.25 (0.47) | 2.63 (0.48) | 0.43 (0.14) |
180 | 0.474 (0.16) | 0.878 (0.10) | 0.21 (0.02) | 1.62 (0.43) | 2.56 (0.32) | 0.43 (0.06) |
220 | 0.243 (0.21) | 0.472 (0.37) | 0.20 (0.03) | 1.49 (0.22) | 2.34 (0.60) | 0.42 (0.09) |
Temperature (°C) | Bending (N/mm2) | Hardness (N) | |
---|---|---|---|
MOE | MOR | ||
0 | 6280 (256.98) | 107.11 (24.21) | 5934 (583.12) |
150 | 5946 (517.33) | 91.26 (26.63) | 5320 (827.11) |
180 | 3820 (383.54) | 74.33 (21.55) | 3513 (889.13) |
220 | 2646 (854.24) | 28.93 (11.42) | 2506 (388.42) |
Temperature (°C) | Oven-Dry Density (kg/m3) | Weight Loss (%) | Water Absorption (%) | ||
---|---|---|---|---|---|
2-h | 24-h | ||||
0 | 648 (43) | - | 9.31 (1.22) | 26.92 (2.63) | |
150 | 613 (83) | 5.61 (3.42) | 8.89 (1.94) | 25.22 (6.32) | |
180 | 611 (31) | 8.32 (2.78) | 3.96 (1.89) | 20.00 (3.74) | |
220 | 556 (49) | 12.17 (4.91) | 3.73 (1.31) | 19.39 (3.25) |
Temperature (°C) | Color Parameters | ||
---|---|---|---|
L * | a * | b * | |
0 | 72.07 (1.28) | 5.65 (0.70) | 20.57 (1.10) |
150 | 75.29 (0.83) | 5.56 (1.01) | 20.53 (0.73) |
180 | 54.41 (1.23) | 8.32 (0.39) | 20.26 (0.40) |
220 | 48.88 (1.31) | 9.69 (0.51) | 20.80 (0.62 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chotikhun, A.; Kittijaruwattana, J.; Salca, E.-A.; Hiziroglu, S. Selected Physical and Mechanical Properties of Microwave Heat Treated Rubberwood (Hevea brasiliensis). Appl. Sci. 2020, 10, 6273. https://doi.org/10.3390/app10186273
Chotikhun A, Kittijaruwattana J, Salca E-A, Hiziroglu S. Selected Physical and Mechanical Properties of Microwave Heat Treated Rubberwood (Hevea brasiliensis). Applied Sciences. 2020; 10(18):6273. https://doi.org/10.3390/app10186273
Chicago/Turabian StyleChotikhun, Aujchariya, Jitralada Kittijaruwattana, Emilia-Adela Salca, and Salim Hiziroglu. 2020. "Selected Physical and Mechanical Properties of Microwave Heat Treated Rubberwood (Hevea brasiliensis)" Applied Sciences 10, no. 18: 6273. https://doi.org/10.3390/app10186273
APA StyleChotikhun, A., Kittijaruwattana, J., Salca, E.-A., & Hiziroglu, S. (2020). Selected Physical and Mechanical Properties of Microwave Heat Treated Rubberwood (Hevea brasiliensis). Applied Sciences, 10(18), 6273. https://doi.org/10.3390/app10186273