Stability of Extended Earth Berm for High Landfill
Abstract
:Featured Application
Abstract
1. Introduction
2. Project Background
3. Numerical Model
3.1. Soil Propriety
3.2. Geotextiles
3.3. Anti-Slide Piles
3.4. Strength Reduction Method
4. Numerical Model Validation
5. Results and Discussion
5.1. Effect of Geotextile Strength
5.2. Effect of Leachate Level
5.3. Effect of Pile Arrangement
6. Conclusions
- (1)
- The leachate level has significant impact on the stability of a berm. The operational leachate level should be controlled at a height of 20 m; in such a case, an FOS value of 1.42 can be obtained and thus meet the specification (CJJ/176-2012) requirement of 1.35.
- (2)
- The stability of the berm is higher when it is reinforced with a higher strength geotextile and the predicted tensile force of the geotextile is lower.
- (3)
- An anti-slide pile arrangement has a certain influence on the slip surface. The failure surface goes through the toe of the berm, develops along the interface between the new and old berms, and finally extends into the MSW mass on the upper left of the GRS berm.
- (4)
- When the total length of piles is the same, the reinforcement effect of single row of piles is better than that of a double row of piles.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qian, X.D.; Koerner, R.M. Stability analysis when using an engineered berm to increase landfill space. J. Geotech. Geoenviron. Eng. 2009, 135, 1082–1091. [Google Scholar] [CrossRef]
- Cowland, J.W. Geogrid reinforced soil structures to increase landfill capacity. In Proceedings of the 4th Asian Reginal Conference on Geosynthetics, Shanghai, China, 17–20 June 2008. [Google Scholar]
- Sochovka, R. A project of many firsts: The south Hadley landfill cell 2D vertical expansion. SWANA Landfill Reuse Excellence Award; ARM Group Inc.: South Hadley, MA, USA, 2012. [Google Scholar]
- Espinoza, R.D.; Houlihan, M.F. Capacity enhancement at coastal disposal sites. In Coastal Engineering Practice (2011); ASCE: San Diego, CA, USA, 2014; pp. 226–234. [Google Scholar]
- Eith, A.W.; Ballod, C.P.; Hart, M.F.; Case, M.E. Long-term performance of geogrid-reinforced mechanically stabilized earth (MSE) berms. In Proceedings of the GRI-18 Geosynthetics Research and Development in Progress, Austin, TX, USA, 24–26 January 2005. [Google Scholar]
- Gupta, R.; Morris, J.W.F.; Espinoza, R.D. Sustainable waste management using MSE berms at disposal sites. In Geoenvironmental Practices and Sustainability; Sivakumar Babu, G.L., Reddy, K.R., De Manoj Datta, A., Eds.; Springer: Singapore, 2017; pp. 277–284. [Google Scholar]
- Eid, H.T.; Stark, T.D.; Evans, W.D.; Sherry, P.E. Municipal solid waste slope failure I: Waste and foundation soil properties. J. Geotech. Geoenviron. Eng. 2000, 126, 397–407. [Google Scholar] [CrossRef]
- Chen, Y.M.; Wang, L.Z.; Hu, Y.Y.; Wu, S.M.; Zhang, Z.Y. Stability analysis of a solid waste landfill slope. China Civ. Eng. J. 2000, 33, 92–97. (In Chinese) [Google Scholar]
- Dixon, N.; Jones, D.R.V. Engineering properties of municipal solid waste. Geotext. Geomembr. 2005, 23, 205–233. [Google Scholar] [CrossRef]
- Jiang, J.G.; Yan, Y.; Yang, S.H.; Ye, B.; Zhang, C. Effects of leachate accumulation on landfill stability in humid regions of China. Waste Manag. 2010, 30, 848–855. [Google Scholar] [CrossRef]
- Koerner, R.M.; Soong, T.Y. Leachate in landfills: The stability issues. Geotext. Geomembr. 2000, 18, 293–309. [Google Scholar] [CrossRef]
- Palmeira, E.M. Soil-geosynthetic interaction: Modelling and analysis. Geotext. Geomembr. 2009, 27, 368–390. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Zornberg, J.G. A transparent pullout testing device for 3d evaluation of soil-geogrid interaction. Geotech. Test. J. 2015, 38, 686–707. [Google Scholar] [CrossRef]
- Lee, K.M.; Manjunath, V.R. Soil-geotextile interface friction by direct shear tests. Can. Geotech. J. 2000, 37, 238–252. [Google Scholar] [CrossRef]
- Lashkari, A.; Jamali, V. Global and local sand-geosynthetic interface behavior. Géotechnique 2020, 1–22. [Google Scholar] [CrossRef]
- Kenter, R.J.; Schmucker, B.O.; Miller, K.R. The day the earth didn’t stand still: The Rumpke landslide. Waste Age 1997, 28, 66–81. [Google Scholar]
- Koerner, R.M.; Soong, T.Y. Stability assessment of ten large landfill failures. In Proceedings of the Advances in Transportation and Geoenvironmental Systems Using Geosynthetics, Denver, CO, USA, 5–8 August 2000; pp. 1–38. [Google Scholar]
- Stark, T.D.; Eid, H.T.; Evans, W.D.; Sherry, P.E. Municipal solid waste slope failure. II: Stability analyses. J. Geotech. Geoenviron. Eng. 2000, 126, 408–419. [Google Scholar]
- Zornberg, J.G.; Kavazanjian, E., Jr. Prediction of the performance of a geogrid-reinforced slope founded on solid waste. Soils Found. 2001, 41, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Housing and Urban Rural Development of the People’s Republic of China. Technical Code for Geotechnical Engineering of Municipal Solid Waste Sanitary Landfills; CJJ /176-2012; China Architecture and Building Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Brinkgreve, R.B.J.; Kumarswamy, S.; Swolfs, W.M.; Foria, F. Plaxis 2D Reference Manual; Delft University of Technology: Delft, The Netherlands, 2018. [Google Scholar]
- Mohamed, S.B.; Yang, A.K.H.; Hung, W.Y. Finite element analyses of two-tier geosynthetic-reinforced soil walls: Comparison involving centrifuge tests and limit equilibrium results. Comput. Geotech. 2014, 61, 67–84. [Google Scholar] [CrossRef]
- Tschuchnigg, F.; Schweiger, H.F.; Sloan, S.W. Slope stability analysis by means of finite element limit analysis and finite element strength reduction techniques. Part II: Back analyses of a case history. Comput. Geotech. 2015, 70, 169–177. [Google Scholar]
- Yang, H.; Thuo, J.N.; Chen, J.W.; Liu, C.N. Failure investigation of a geosynthetic reinforced soil slope subjected to rainfall. Geosynth. Int. 2019, 21, 42–65. [Google Scholar] [CrossRef]
- ISO 10319:2015 Geosynthetics: Wide-Width Tensile Test. Available online: https://www.iso.org/standard/57696.html (accessed on 6 September 2020).
- Ministry of Housing and Urban Rural Development of the People’s Republic of China. Technical Code for Application of Geosynthetics; GB/T 50290-2014; China Planning Press: Beijing, China, 2014. (In Chinese) [Google Scholar]
- Hatami, K.; Bathurst, R.J. Development and verification of a numerical model for the analysis of geosynthetic-reinforced soil segmental walls under working stress conditions. Can. Geotech. J. 2005, 67, 1066–1085. [Google Scholar] [CrossRef]
- Griffiths, D.; Lane, P. Slope stability analysis by finite elements. Géotechnique 1999, 49, 387–403. [Google Scholar] [CrossRef]
- Dawson, E.M.; Roth, W.H.; Drescher, A. Slope stability analysis by strength reduction. Géotechnique 1999, 49, 835–840. [Google Scholar] [CrossRef]
- Jie, Y.X.; Qin, X.Y.; Jin, X. Stability of high reinforced soil slopes. Chin. J. Geotech. Eng. 2012, 34, 660–666. (In Chinese) [Google Scholar]
- Yang, K.H.; Zornberg, J.G.; Liu, C.N.; Lin, H.D. Stress distribution and development within geosynthetic-reinforced soil slopes. Geosynth. Int. 2015, 19, 62–78. [Google Scholar] [CrossRef] [Green Version]
- Zornberg, J.G.; Sitar, N.; Mitchell, J.K. Performance of Geosynthetic Reinforced Slopes at Failure. J. Geotech. Geoenviron. Eng. 1998, 124, 670–683. [Google Scholar] [CrossRef] [Green Version]
Soil | γ (kN/m3) | w (%) | φ (°) | ψ (°) | c (kPa) | v (-) | E (MPa) |
---|---|---|---|---|---|---|---|
New berm | 19.7 | 11.2 | 32 | 0 | 10 | 0.3 | 50 |
MSW | 10.8 | 35 | 15 | 0 | 12 | 0.35 | 10 |
Old berm | 19 | 18 | 25 | 0 | 20 | 0.3 | 50 |
Foundation | 20 | 24.8 | 23 | 0 | 33 | 0.25 | 63 |
Bedrock | 25 | - | 42 | 0 | 300 | 0.25 | 5000 |
Cases | Sv | T5%,l | Lpile | Hw | Description | |
---|---|---|---|---|---|---|
m | kN/m | m | m | |||
Baseline | 0.5 | 20 | 18 | 20 | Design scheme | |
Group I | Geotextile I | 1.0 | 15 | 18 | 20 | To investigate effect of geotextile strength |
Geotextile II | 1.5 | 10 | 18 | 20 | ||
Group II | Leachate level I | 0.5 | 20 | 18 | 15 | To investigate effect of leachate level |
Leachate level II | 0.5 | 20 | 18 | 25 | ||
Leachate level III | 0.5 | 20 | 18 | 30 | ||
Group III | Piles I | 0.5 | 20 | 10 | 20 | To investigate effect of pile arrangement |
Piles II | 0.5 | 20 | 25 | 20 | ||
Piles III | 0.5 | 20 | 10 + 10 | 20 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Zhou, X.; Xiao, Z. Stability of Extended Earth Berm for High Landfill. Appl. Sci. 2020, 10, 6281. https://doi.org/10.3390/app10186281
Jiang H, Zhou X, Xiao Z. Stability of Extended Earth Berm for High Landfill. Applied Sciences. 2020; 10(18):6281. https://doi.org/10.3390/app10186281
Chicago/Turabian StyleJiang, Haoran, Xiaowen Zhou, and Ziwei Xiao. 2020. "Stability of Extended Earth Berm for High Landfill" Applied Sciences 10, no. 18: 6281. https://doi.org/10.3390/app10186281
APA StyleJiang, H., Zhou, X., & Xiao, Z. (2020). Stability of Extended Earth Berm for High Landfill. Applied Sciences, 10(18), 6281. https://doi.org/10.3390/app10186281