Integrated Geothermal Energy Systems for Small-Scale Combined Heat and Power Production: Energy and Economic Investigation
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Organic Rankine Cycle (ORC) Unit
2.2. Heat Exchanger (HEX) Unit
2.3. Operating Conditions
2.4. Electric and Thermal Demand
2.5. Economic Analysis
3. Results and Discussion
3.1. Performance of the Integrated Geothermal System
3.2. Influence of the Operating Strategy
3.3. Hourly Energy Balance for the Selected Integrated System
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
A | Area of heat exchanger (m2) |
b | Bare module coefficient (-) |
C | Cost (€) |
c | Bare module coefficient (-) |
D | Tube diameter (m) |
d | Minimum dimensionless distance (-) |
eEUR/USD | Euro/US dollar exchange rate (€/$) |
FM | Bare module factor (-) |
FM | Material factor (-) |
Fp | Pressure factor (-) |
H | Heat transfer coefficient (W/m2 K) |
h | Enthalpy (J/kg) |
K | Thermal conductivity (W/m K) |
k | Bare module coefficient (-) |
Mass flow rate (kg/s) | |
P | Power (W) |
p | Pressure (Pa) |
Rf | Fouling factor (m2 K/W) |
S | Size parameter (m2 or kW) |
s | Entropy (J/kg K) |
T | Temperature (°C) |
U | Global heat exchange coefficient (W/m2 K) |
Greek characters | |
Δ | Difference |
η | Efficiency |
Subscripts and superscripts | |
c | Cold |
cool | Cooling system |
el | Electric |
em | Electro-mechanical |
eq | Equivalent |
g | Geothermal |
h | Hot |
i | Inside |
in | Inlet |
j | Generic component |
k | Generic configuration |
lm | Logarithmic mean |
mar | Marginal |
max | Maximum |
min | Minimum |
o | Outside |
out | Outlet |
p | Pump |
ref | Reference |
t | Turbine |
th | Thermal |
0 | Base conditions |
Acronyms | |
CEPCI | Chemical engineering plant cost index |
CHP | Combined heat and power |
EUF | Energy utilisation factor |
GHG | Greenhouse gas |
HEX | Heat exchanger |
HVAC | Heating, ventilation and air conditioning |
IHE | Internal heat exchanger |
LCA | Life cycle assessment |
ODP | Ozone depletion potential |
ORC | Organic Rankine cycle |
References
- Chen, X.; Si, Y.; Liu, C.; Chen, L.; Xue, X.; Guo, Y.; Mei, S. The Value and Optimal Sizes of Energy Storage Units in Solar-Assist Cogeneration Energy Hubs. Appl. Sci. 2020, 10, 4994. [Google Scholar] [CrossRef]
- Amber, K.; Day, T.; Ratyal, N.; Kiani, A.; Ahmad, R. Techno, Economic and Environmental Assessment of a Combined Heat and Power (CHP) System—A Case Study for a University Campus. Energies 2018, 11, 1133. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Xu, X.; Yu, D.; Dong, M.; Liu, H. Rule Based Coordinated Control of Domestic Combined Micro-CHP and Energy Storage System for Optimal Daily Cost. Appl. Sci. 2017, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Carlos de Oliveira Matias, J.; Godina, R.; Pouresmaeil, E. Sustainable Energy Systems: Optimization and Efficiency. Appl. Sci. 2020, 10, 4405. [Google Scholar] [CrossRef]
- Amelio, M.; Morrone, P. Residential Cogeneration and Trigeneration. In Current Trends and Future Developments on (Bio-) Membrane; Elsevier: Amsterdam, The Netherlands, 2020; pp. 141–175. ISBN 978-0-12-817807-2. [Google Scholar]
- Algieri, A.; Andiloro, S.; Tamburino, V.; Zema, D.A. The potential of agricultural residues for energy production in Calabria (Southern Italy). Renew. Sustain. Energy Rev. 2019, 104, 1–14. [Google Scholar] [CrossRef]
- Ahmadi, A.; El Haj Assad, M.; Jamali, D.H.; Kumar, R.; Li, Z.X.; Salameh, T.; Al-Shabi, M.; Ehyaei, M.A. Applications of geothermal organic Rankine Cycle for electricity production. J. Clean. Prod. 2020, 274, 122950. [Google Scholar] [CrossRef]
- Jocić, N.; Müller, J.; Požar, T.; Bertermann, D. Renewable Energy Sources in a Post-Socialist Transitional Environment: The Influence of Social Geographic Factors on Potential Utilization of Very Shallow Geothermal Energy within Heating Systems in Small Serbian Town of Ub. Appl. Sci. 2020, 10, 2739. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Yu, Z. Research on a Coupled Total-Flow and Single-Flash (TF-SF) System for Power and Freshwater Generation from Geothermal Source. Appl. Sci. 2020, 10, 2689. [Google Scholar] [CrossRef] [Green Version]
- Moya, D.; Aldás, C.; Kaparaju, P. Geothermal energy: Power plant technology and direct heat applications. Renew. Sustain. Energy Rev. 2018, 94, 889–901. [Google Scholar] [CrossRef]
- Bianchi, M.; Branchini, L.; Pascale, A.D.; Melino, F.; Ottaviano, S.; Peretto, A.; Torricelli, N.; Zampieri, G. Performance and operation of micro-ORC energy system using geothermal heat source. Energy Procedia 2018, 148, 384–391. [Google Scholar] [CrossRef]
- Anderson, A.; Rezaie, B. Geothermal technology: Trends and potential role in a sustainable future. Appl. Energy 2019, 248, 18–34. [Google Scholar] [CrossRef]
- Lund, J.W.; Boyd, T.L. Direct utilization of geothermal energy 2015 worldwide review. Geothermics 2016, 60, 66–93. [Google Scholar] [CrossRef]
- Zarrouk, S.J.; Moon, H. Efficiency of geothermal power plants: A worldwide review. Geothermics 2014, 51, 142–153. [Google Scholar] [CrossRef]
- Bertani, R. Geothermal power generation in the world 2010–2014 update report. Geothermics 2016, 60, 31–43. [Google Scholar] [CrossRef]
- Algieri, A. Energy Exploitation of High-Temperature Geothermal Sources in Volcanic Areas—A Possible ORC Application in Phlegraean Fields (Southern Italy). Energies 2018, 11, 618. [Google Scholar] [CrossRef] [Green Version]
- Nami, H.; Anvari-Moghaddam, A. Geothermal driven micro-CCHP for domestic application—Exergy, economic and sustainability analysis. Energy 2020, 207, 118195. [Google Scholar] [CrossRef]
- Ehyaei, M.A.; Ahmadi, A.; El Haj Assad, M.; Rosen, M.A. Investigation of an integrated system combining an Organic Rankine Cycle and absorption chiller driven by geothermal energy: Energy, exergy, and economic analyses and optimization. J. Clean. Prod. 2020, 258, 120780. [Google Scholar] [CrossRef]
- Li, P.; Han, Z.; Jia, X.; Mei, Z.; Han, X.; Wang, Z. An Improved Analysis Method for Organic Rankine Cycles Based on Radial-Inflow Turbine Efficiency Prediction. Appl. Sci. 2018, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, J.C.; Valencia Ochoa, G.; Duarte-Forero, J. Regenerative Organic Rankine Cycle as Bottoming Cycle of an Industrial Gas Engine: Traditional and Advanced Exergetic Analysis. Appl. Sci. 2020, 10, 4411. [Google Scholar] [CrossRef]
- Alshammari, F.; Karvountzis-Kontakiotis, A.; Pesiridis, A.; Minton, T. Radial Expander Design for an Engine Organic Rankine Cycle Waste Heat Recovery System. Energy Procedia 2017, 129, 285–292. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C. Investigation of a hybrid ORC driven by waste heat and solar energy. Energy Convers. Manag. 2018, 156, 427–439. [Google Scholar] [CrossRef]
- Peris, B.; Navarro-Esbrí, J.; Molés, F.; Martí, J.P.; Mota-Babiloni, A. Experimental characterization of an Organic Rankine Cycle (ORC) for micro-scale CHP applications. Appl. Therm. Eng. 2015, 79, 1–8. [Google Scholar] [CrossRef]
- Flores, R.A.; Aviña Jiménez, H.M.; González, E.P.; González Uribe, L.A. Aerothermodynamic design of 10 kW radial inflow turbine for an organic flashing cycle using low-enthalpy resources. J. Clean. Prod. 2020, 251, 119713. [Google Scholar] [CrossRef]
- Kaczmarczyk, M.; Tomaszewska, B.; Operacz, A. Sustainable Utilization of Low Enthalpy Geothermal Resources to Electricity Generation through a Cascade System. Energies 2020, 13, 2495. [Google Scholar] [CrossRef]
- Pili, R.; Eyerer, S.; Dawo, F.; Wieland, C.; Spliethoff, H. Development of a non-linear state estimator for advanced control of an ORC test rig for geothermal application. Renew. Energy 2020, 161, 676–690. [Google Scholar] [CrossRef]
- Dong, L.; Liu, H.; Riffat, S. Development of small-scale and micro-scale biomass-fuelled CHP systems—A literature review. Appl. Therm. Eng. 2009, 29, 2119–2126. [Google Scholar] [CrossRef] [Green Version]
- Morrone, P.; Algieri, A.; Castiglione, T. Hybridisation of biomass and concentrated solar power systems in transcritical organic Rankine cycles: A micro combined heat and power application. Energy Convers. Manag. 2019, 180, 757–768. [Google Scholar] [CrossRef]
- Algieri, A.; Morrone, P. Techno-economic Analysis of Biomass-fired ORC Systems for Single-family Combined Heat and Power (CHP) Applications. Energy Procedia 2014, 45, 1285–1294. [Google Scholar] [CrossRef] [Green Version]
- Eyerer, S.; Dawo, F.; Wieland, C.; Spliethoff, H. Advanced ORC architecture for geothermal combined heat and power generation. Energy 2020, 205, 117967. [Google Scholar] [CrossRef]
- Drescher, U.; Brüggemann, D. Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants. Appl. Therm. Eng. 2007, 27, 223–228. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Dentice d’Accadia, M.; Vicidomini, M. Thermo-Economic Analysis of Hybrid Solar-Geothermal Polygeneration Plants in Different Configurations. Energies 2020, 13, 2391. [Google Scholar] [CrossRef]
- Lecompte, S.; Ntavou, E.; Tchanche, B.; Kosmadakis, G.; Pillai, A.; Manolakos, D.; De Paepe, M. Review of Experimental Research on Supercritical and Transcritical Thermodynamic Cycles Designed for Heat Recovery Application. Appl. Sci. 2019, 9, 2571. [Google Scholar] [CrossRef] [Green Version]
- Macchi, E.; Astolfi, M. Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications; Woodhead Publishing: Cambridge, UK, 2016; ISBN 978-0-08-100510-1. [Google Scholar]
- Rivera Diaz, A.; Kaya, E.; Zarrouk, S.J. Reinjection in geothermal fields—A worldwide review update. Renew. Sustain. Energy Rev. 2016, 53, 105–162. [Google Scholar] [CrossRef]
- El Haj Assad, M.; Bani-Hani, E.; Khalil, M. Performance of geothermal power plants (single, dual, and binary) to compensate for LHC-CERN power consumption: Comparative study. Geotherm. Energy 2017, 5, 17. [Google Scholar] [CrossRef]
- Lee, I.; Tester, J.W.; You, F. Systems analysis, design, and optimization of geothermal energy systems for power production and polygeneration: State-of-the-art and future challenges. Renew. Sustain. Energy Rev. 2019, 109, 551–577. [Google Scholar] [CrossRef]
- Heberle, F.; Brüggemann, D. Thermoeconomic Analysis of Hybrid Power Plant Concepts for Geothermal Combined Heat and Power Generation. Energies 2014, 7, 4482–4497. [Google Scholar] [CrossRef] [Green Version]
- Lecompte, S.; Huisseune, H.; Van den Broek, M.; De Schampheleire, S.; De Paepe, M. Part load based thermo-economic optimization of the Organic Rankine Cycle (ORC) applied to a combined heat and power (CHP) system. Appl. Energy 2013, 111, 871–881. [Google Scholar] [CrossRef]
- Eller, T.; Heberle, F.; Brüggemann, D. Transient Simulation of Geothermal Combined Heat and Power Generation for a Resilient Energetic and Economic Evaluation. Energies 2019, 12, 894. [Google Scholar] [CrossRef] [Green Version]
- Fiaschi, D.; Lifshitz, A.; Manfrida, G.; Tempesti, D. An innovative ORC power plant layout for heat and power generation from medium- to low-temperature geothermal resources. Energy Convers. Manag. 2014, 88, 883–893. [Google Scholar] [CrossRef]
- Li, T.; Zhu, J.; Zhang, W. Comparative analysis of series and parallel geothermal systems combined power, heat and oil recovery in oilfield. Appl. Therm. Eng. 2013, 50, 1132–1141. [Google Scholar] [CrossRef]
- Van Erdeweghe, S.; Van Bael, J.; Laenen, B.; D’haeseleer, W. Comparison of series/parallel configuration for a low-T geothermal CHP plant, coupled to thermal networks. Renew. Energy 2017, 111, 494–505. [Google Scholar] [CrossRef]
- Mohammadzadeh Bina, S.; Jalilinasrabady, S.; Fujii, H. Energy, economic and environmental (3E) aspects of internal heat exchanger for ORC geothermal power plants. Energy 2017, 140, 1096–1106. [Google Scholar] [CrossRef]
- Marty, F.; Sochard, S.; Serra, S.; Reneaume, J.-M. Multi-objective approach for a combined heat and power geothermal plant optimization. Chem. Prod. Process Model. 2020, 1. [Google Scholar] [CrossRef]
- Pastor-Martinez, E.; Rubio-Maya, C.; Ambriz-Díaz, V.M.; Belman-Flores, J.M.; Pacheco-Ibarra, J.J. Energetic and exergetic performance comparison of different polygeneration arrangements utilizing geothermal energy in cascade. Energy Convers. Manag. 2018, 168, 252–269. [Google Scholar] [CrossRef]
- El-Emam, R.S.; Dincer, I. Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle. Appl. Therm. Eng. 2013, 59, 435–444. [Google Scholar] [CrossRef]
- Toselli, D.; Heberle, F.; Brüggemann, D. Techno-Economic Analysis of Hybrid Binary Cycles with Geothermal Energy and Biogas Waste Heat Recovery. Energies 2019, 12, 1969. [Google Scholar] [CrossRef] [Green Version]
- Van Erdeweghe, S.; Van Bael, J.; Laenen, B.; D’haeseleer, W. Design and off-design optimization procedure for low-temperature geothermal organic Rankine cycles. Appl. Energy 2019, 242, 716–731. [Google Scholar] [CrossRef]
- Astolfi, M.; La Diega, L.N.; Romano, M.C.; Merlo, U.; Filippini, S.; Macchi, E. Techno-economic optimization of a geothermal ORC with novel “Emeritus” heat rejection units in hot climates. Renew. Energy 2020, 147, 2810–2821. [Google Scholar] [CrossRef]
- Van Erdeweghe, S.; Van Bael, J.; Laenen, B.; D’haeseleer, W. Optimal configuration for a low-temperature geothermal CHP plant based on thermoeconomic optimization. Energy 2019, 179, 323–335. [Google Scholar] [CrossRef]
- Wieland, C.; Meinel, D.; Eyerer, S.; Spliethoff, H. Innovative CHP concept for ORC and its benefit compared to conventional concepts. Appl. Energy 2016, 183, 478–490. [Google Scholar] [CrossRef]
- Habka, M.; Ajib, S. Evaluation of mixtures performances in Organic Rankine Cycle when utilizing the geothermal water with and without cogeneration. Appl. Energy 2015, 154, 567–576. [Google Scholar] [CrossRef]
- Marty, F.; Serra, S.; Sochard, S.; Reneaume, J.-M. Simultaneous optimization of the district heating network topology and the Organic Rankine Cycle sizing of a geothermal plant. Energy 2018, 159, 1060–1074. [Google Scholar] [CrossRef]
- Marty, F.; Serra, S.; Sochard, S.; Reneaume, J.-M. Economic optimization of a combined heat and power plant: Heat vs electricity. Energy Procedia 2017, 116, 138–151. [Google Scholar] [CrossRef]
- Ademe. Fongeosec—Conception d’un Démonstrateur de Centrale Géothermique Haute Enthalpie. Available online: https://www.ademe.fr/fongeosec (accessed on 3 September 2020).
- Eyerer, S.; Schifflechner, C.; Hofbauer, S.; Bauer, W.; Wieland, C.; Spliethoff, H. Combined heat and power from hydrothermal geothermal resources in Germany: An assessment of the potential. Renew. Sustain. Energy Rev. 2020, 120, 109661. [Google Scholar] [CrossRef]
- Algieri, A.; Morrone, P. Comparative energetic analysis of high-temperature subcritical and transcritical Organic Rankine Cycle (ORC). A biomass application in the Sibari district. Appl. Therm. Eng. 2012, 36, 236–244. [Google Scholar] [CrossRef]
- Cau, G.; Cocco, D. Comparison of Medium-size Concentrating Solar Power Plants based on Parabolic Trough and Linear Fresnel Collectors. Energy Procedia 2014, 45, 101–110. [Google Scholar] [CrossRef]
- Song, J.; Loo, P.; Teo, J.; Markides, C.N. Thermo-Economic Optimization of Organic Rankine Cycle (ORC) Systems for Geothermal Power Generation: A Comparative Study of System Configurations. Front. Energy Res. 2020, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Preißinger, M.; Heberle, F.; Brüggemann, D. Advanced Organic Rankine Cycle for geothermal application. Int. J. Low Carb. Tech. 2013, 8, i62–i68. [Google Scholar] [CrossRef] [Green Version]
- Astolfi, M.; Romano, M.C.; Bombarda, P.; Macchi, E. Binary ORC (organic Rankine cycles) power plants for the exploitation of medium–low temperature geothermal sources—Part A: Thermodynamic optimization. Energy 2014, 66, 423–434. [Google Scholar] [CrossRef]
- Van Erdeweghe, S.; Van Bael, J.; D’haeseleer, W. Optimal configuration, design and control of a binary geothermal combined heat-and-power plant. Energy Convers. Manag. 2019, 198, 111854. [Google Scholar] [CrossRef]
- Manente, G.; Toffolo, A.; Lazzaretto, A.; Paci, M. An Organic Rankine Cycle off-design model for the search of the optimal control strategy. Energy 2013, 58, 97–106. [Google Scholar] [CrossRef]
- Nasruddin, N.; Dwi Saputra, I.; Mentari, T.; Bardow, A.; Marcelina, O.; Berlin, S. Exergy, exergoeconomic, and exergoenvironmental optimization of the geothermal binary cycle power plant at Ampallas, West Sulawesi, Indonesia. Therm. Sci. Eng. Prog. 2020, 19, 100625. [Google Scholar] [CrossRef]
- Dumont, O.; Dickes, R.; De Rosa, M.; Douglas, R.; Lemort, V. Technical and economic optimization of subcritical, wet expansion and transcritical Organic Rankine Cycle (ORC) systems coupled with a biogas power plant. Energy Convers. Manag. 2018, 157, 294–306. [Google Scholar] [CrossRef] [Green Version]
- Garg, P.; Orosz, M.S.; Kumar, P. Thermo-economic evaluation of ORCs for various working fluids. Appl. Therm. Eng. 2016, 109, 841–853. [Google Scholar] [CrossRef] [Green Version]
- Moloney, F.; Almatrafi, E.; Goswami, D.Y. Working fluid parametric analysis for regenerative supercritical organic Rankine cycles for medium geothermal reservoir temperatures. Energy Procedia 2017, 129, 599–606. [Google Scholar] [CrossRef]
- Toffolo, A.; Lazzaretto, A.; Manente, G.; Paci, M. A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems. Appl. Energy 2014, 121, 219–232. [Google Scholar] [CrossRef]
- Akbari, A.D.; Mahmoudi, S.M.S. Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle. Energy 2014, 78, 501–512. [Google Scholar] [CrossRef]
- Heberle, F.; Brüggemann, D. Exergy based fluid selection for a geothermal Organic Rankine Cycle for combined heat and power generation. Appl. Therm. Eng. 2010, 30, 1326–1332. [Google Scholar] [CrossRef]
- Wang, X.; Levy, E.K.; Pan, C.; Romero, C.E.; Banerjee, A.; Rubio-Maya, C.; Pan, L. Working fluid selection for organic Rankine cycle power generation using hot produced supercritical CO2 from a geothermal reservoir. Appl. Therm. Eng. 2019, 149, 1287–1304. [Google Scholar] [CrossRef]
- Gawlik, K.; Hassani, V. Advanced Binary Cycles: Optimum Working Fluids. In Proceedings of the IECEC-97 Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203), Honolulu, HI, USA, 27 July–1 August 1997; Volume 3, pp. 1809–1814. [Google Scholar]
- Heberle, F.; Brüggemann, D. Thermo-Economic Evaluation of Organic Rankine Cycles for Geothermal Power Generation Using Zeotropic Mixtures. Energies 2015, 8, 2097–2124. [Google Scholar] [CrossRef] [Green Version]
- Askari, I.; Calise, F.; Vicidomini, M. Design and Comparative Techno-Economic Analysis of Two Solar Polygeneration Systems Applied for Electricity, Cooling and Fresh Water Production. Energies 2019, 12, 4401. [Google Scholar] [CrossRef] [Green Version]
- Ghaem Sigarchian, S.; Malmquist, A.; Martin, V. Design Optimization of a Complex Polygeneration System for a Hospital. Energies 2018, 11, 1071. [Google Scholar] [CrossRef] [Green Version]
- Carlino, S.; Troiano, A.; Di Giuseppe, M.G.; Tramelli, A.; Troise, C.; Somma, R.; De Natale, G. Exploitation of geothermal energy in active volcanic areas: A numerical modelling applied to high temperature Mofete geothermal field, at Campi Flegrei caldera (Southern Italy). Renew. Energy 2016, 87, 54–66. [Google Scholar] [CrossRef]
- Carlino, S.; Somma, R.; Troise, C.; De Natale, G. The geothermal exploration of Campanian volcanoes: Historical review and future development. Renew. Sustain. Energy Rev. 2012, 16, 1004–1030. [Google Scholar] [CrossRef]
- Harvey, L.D.D. Energy and the New Reality 1: Energy Efficiency and the Demand for Energy Services; Earthscan: London, UK; Washington, DC, USA, 2010; ISBN 978-1-84407-912-4. [Google Scholar]
- European Commission. Commission Delegated Regulation (EU) 2015/2402 of 12 October 2015 Reviewing Harmonised Efficiency Reference Values for Separate Production of Electricity and Heat in Application of Directive 2012/27/EU of the European Parliament and of the Council and Repealing Commission Implementing Decision 2011/877/EU. 2015. Available online: https://eur-lex.europa.eu/eli/reg_del/2015/2402/oj (accessed on 16 July 2020).
- Li, J.; Liu, Q.; Ge, Z.; Duan, Y.; Yang, Z. Thermodynamic performance analyses and optimization of subcritical and transcritical organic Rankine cycles using R1234ze(E) for 100–200 °C heat sources. Energy Convers. Manag. 2017, 149, 140–154. [Google Scholar] [CrossRef]
- Gao, T.; Liu, C. Off-Design Performances of Subcritical and Supercritical Organic Rankine Cycles in Geothermal Power Systems under an Optimal Control Strategy. Energies 2017, 10, 1185. [Google Scholar] [CrossRef] [Green Version]
- Shengjun, Z.; Huaixin, W.; Tao, G. Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation. Appl. Energy 2011, 88, 2740–2754. [Google Scholar] [CrossRef]
- Yang, M.-H.; Yeh, R.-H. Economic performances optimization of the transcritical Rankine cycle systems in geothermal application. Energy Convers. Manag. 2015, 95, 20–31. [Google Scholar] [CrossRef]
- Wei, D.; Liu, C.; Geng, Z. Conversion of Low-Grade Heat from Multiple Streams in Methanol to Olefin (MTO) Process Based on Organic Rankine Cycle (ORC). Appl. Sci. 2020, 10, 3617. [Google Scholar] [CrossRef]
- Unamba, C.K.; Sapin, P.; Li, X.; Song, J.; Wang, K.; Shu, G.; Tian, H.; Markides, C.N. Operational Optimisation of a Non-Recuperative 1-kWe Organic Rankine Cycle Engine Prototype. Appl. Sci. 2019, 9, 3024. [Google Scholar] [CrossRef] [Green Version]
- Valencia, G.; Duarte, J.; Isaza-Roldan, C. Thermoeconomic Analysis of Different Exhaust Waste-Heat Recovery Systems for Natural Gas Engine Based on ORC. Appl. Sci. 2019, 9, 4017. [Google Scholar] [CrossRef] [Green Version]
- Karimi, S.; Mansouri, S. A comparative profitability study of geothermal electricity production in developed and developing countries: Exergoeconomic analysis and optimization of different ORC configurations. Renew. Energy 2018, 115, 600–619. [Google Scholar] [CrossRef]
- Kazemi, S.; Nor, M.I.M.; Teoh, W.H. Thermodynamic and economic investigation of an ionic liquid as a new proposed geothermal fluid in different organic Rankine cycles for energy production. Energy 2020, 193, 116722. [Google Scholar] [CrossRef]
- Samadi, F.; Kazemi, N. Exergoeconomic analysis of zeotropic mixture on the new proposed organic Rankine cycle for energy production from geothermal resources. Renew. Energy 2020, 152, 1250–1265. [Google Scholar] [CrossRef]
- Algieri, A.; Morrone, P. Energy analysis of Organic Rankine Cycles for biomass applications. Therm. Sci. 2015, 19, 193–205. [Google Scholar] [CrossRef]
- Lemmon, E.W.; Bell, I.H.; Huber, M.L.; McLinden, M.O. Refprop Documentation, Release 10.0. 2018. Available online: https://trc.nist.gov/refprop/REFPROP.PDF (accessed on 16 July 2020).
- Algieri, A.; Morrone, P.; Bova, S. Techno-Economic Analysis of Biofuel, Solar and Wind Multi-Source Small-Scale CHP Systems. Energies 2020, 13, 3002. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, M.; Yang, X.; Guo, H.; Wang, J. Economic Analysis of Organic Rankine Cycle Using R123 and R245fa as Working Fluids and a Demonstration Project Report. Appl. Sci. 2019, 9, 288. [Google Scholar] [CrossRef] [Green Version]
- Gnielinski, V. New equations for heat and mass-transfer in turbulent pipe and channel flow. Int. Chem. Eng. 1976, 16, 359–368. [Google Scholar]
- Kern, D.Q. Process Heat Transfer; McGraw-Hill Classic Textbook Reissue Series; McGraw-Hill: Pennsylvania, NY, USA, 1990; ISBN 978-0-07-034190-6. [Google Scholar]
- Krasnoshchekov, E.A.; Protopopov, V.S.; Van, F.; Kuraeva, I.V. Experimental Investigation of Heat Transfer for Carbon Dioxide in the Supercritical Region. In Proceedings of the 2nd All-Soviet Union Conference on Heat and Mass Transfer, Minsk, Belarus, May 1964; Volume 1, pp. 26–35. [Google Scholar]
- Pioro, I.L.; Khartabil, H.F.; Duffey, R.B. Heat transfer to supercritical fluids flowing in channels—Empirical correlations (survey). Nucl. Eng. Des. 2004, 230, 69–91. [Google Scholar] [CrossRef]
- Petukhov, B.S.; Krasnoshchekov, E.A.; Protopopov, V.S. An Investigation of Heat Transfer to Fluids Flowing in Pipes under Supercritical Conditions. In Proceedings of the International Developments in Heat Transfer, Boulder, CO, USA, 28 August–1 September 1961; pp. 569–578. [Google Scholar]
- Chang, W.; Chu, X.; Binte Shaik Fareed, A.F.; Pandey, S.; Luo, J.; Weigand, B.; Laurien, E. Heat transfer prediction of supercritical water with artificial neural networks. Appl. Therm. Eng. 2018, 131, 815–824. [Google Scholar] [CrossRef]
- Vijayan, P.K.; Nayak, A.K.; Kumar, N. Governing Differential Equations for Natural Circulation Systems. In Single-Phase, Two-Phase and Supercritical Natural Circulation Systems; Elsevier: Amsterdam, The Netherlands, 2019; pp. 69–118. ISBN 978-0-08-102486-7. [Google Scholar]
- Baik, Y.-J.; Kim, M.; Chang, K.-C.; Lee, Y.-S.; Yoon, H.-K. Power enhancement potential of a mixture transcritical cycle for a low-temperature geothermal power generation. Energy 2012, 47, 70–76. [Google Scholar] [CrossRef]
- Baik, Y.-J.; Kim, M.; Chang, K.C.; Kim, S.J. Power-based performance comparison between carbon dioxide and R125 transcritical cycles for a low-grade heat source. Appl. Energy 2011, 88, 892–898. [Google Scholar] [CrossRef]
- He, J.; Dang, C.; Hihara, E. Supercritical heat transfer characteristics of R1233zd(E) in vertically upward flow. Int. J. Heat Mass Transf. 2018, 127, 497–505. [Google Scholar] [CrossRef]
- Alibaba, M.; Pourdarbani, R.; Hasan Khoshgoftar Manesh, M.; Herrera-Miranda, I.; Gallardo-Bernal, I.; Hernández-Hernández, J.L. Conventional and Advanced Exergy-Based Analysis of Hybrid Geothermal–Solar Power Plant Based on ORC Cycle. Appl. Sci. 2020, 10, 5206. [Google Scholar] [CrossRef]
- Liu, Q.; Duan, Y.; Yang, Z. Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids. Energy 2013, 63, 123–132. [Google Scholar] [CrossRef]
- Dai, X.; Shi, L.; An, Q.; Qian, W. Screening of hydrocarbons as supercritical ORCs working fluids by thermal stability. Energy Convers. Manag. 2016, 126, 632–637. [Google Scholar] [CrossRef]
- Chacartegui, R.; Sánchez, D.; Muñoz, J.M.; Sánchez, T. Alternative ORC bottoming cycles FOR combined cycle power plants. Appl. Energy 2009, 86, 2162–2170. [Google Scholar] [CrossRef]
- Calise, F.; d’Accadia, M.D.; Vicidomini, M.; Scarpellino, M. Design and simulation of a prototype of a small-scale solar CHP system based on evacuated flat-plate solar collectors and Organic Rankine Cycle. Energy Convers. Manag. 2015, 90, 347–363. [Google Scholar] [CrossRef]
- Algieri, A.; Morrone, P. Energetic analysis of biomass-fired ORC systems for micro-scale combined heat and power (CHP) generation. A possible application to the Italian residential sector. Appl. Therm. Eng. 2014, 71, 751–759. [Google Scholar] [CrossRef]
- Xi, H.; Li, M.-J.; He, Y.-L.; Tao, W.-Q. A graphical criterion for working fluid selection and thermodynamic system comparison in waste heat recovery. Appl. Therm. Eng. 2015, 89, 772–782. [Google Scholar] [CrossRef]
- Morrone, P.; Algieri, A.; Castiglione, T.; Perrone, D.; Bova, S. Investigation of the Energy Performance of Multi-Source Integrated CHP Systems for Small-Scale Applications. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2191, p. 020115. [Google Scholar] [CrossRef]
- Turton, R.; Shaeiwitz, J.A.; Bhattacharyya, D.; Whiting, W.B. Analysis, Synthesis, and Design of Chemical Processes, 5th ed.; Pearson Education: New York, NY, USA, 2018; ISBN 978-0-13-417740-3. [Google Scholar]
- Zhang, C.; Liu, C.; Xu, X.; Li, Q.; Wang, S. Energetic, exergetic, economic and environmental (4E) analysis and multi-factor evaluation method of low GWP fluids in trans-critical organic Rankine cycles. Energy 2019, 168, 332–345. [Google Scholar] [CrossRef]
- Meng, F.; Wang, E.; Zhang, B.; Zhang, F.; Zhao, C. Thermo-economic analysis of transcritical CO2 power cycle and comparison with Kalina cycle and ORC for a low-temperature heat source. Energy Convers. Manag. 2019, 195, 1295–1308. [Google Scholar] [CrossRef]
- Chemical Engineering. Plant Cost Index. Available online: https://www.chemengonline.com/site/plant-cost-index/ (accessed on 16 July 2020).
- Okoro, O.V.; Faloye, F.D. Comparative Assessment of Thermo-Syngas Fermentative and Liquefaction Technologies as Waste Plastics Repurposing Strategies. AgriEngineering 2020, 2, 378–392. [Google Scholar] [CrossRef]
- European Central Bank. ECB Euro Reference Exchange Rate: US Dollar (USD). Available online: https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_rates (accessed on 1 July 2020).
- Eurostat. Database. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 16 July 2020).
- Dinçer, İ.; Rosen, M.; Ahmadi, P. Optimization of Energy Systems; John Wiley & Sons: Chichester, West Sussex, UK, 2018; ISBN 978-1-118-89450-7. [Google Scholar]
- Algieri, A.; Zema, D.A.; Nicotra, A.; Zimbone, S.M. Potential energy exploitation in collective irrigation systems using pumps as turbines: A case study in Calabria (Southern Italy). J. Clean. Prod. 2020, 257, 120538. [Google Scholar] [CrossRef]
- Koffi, B.; Cerutti, A.K.; Duerr, M.; Iancu, A.; Kona, A.; Janssens-Maenhout. CoM Default Emission Factors for the Member States of the European Union—Version 2017. Available online: https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/COM-EF/dataset/comw/JRC-CoM-EF-CoMW-EF-2017.pdf (accessed on 16 July 2020).
- Cerutti, A.K.; Duerr, M.; Iancu, A.; Janssens-Maenhout, G.; Koffi, B.; Kona, A.; Covenant of Mayors & Mayors Adapt Offices; European Commission; Joint Research Centre. Covenant of Mayors for Climate and Energy: Default Emission Factors for Local Emission Inventories; Version 2017; Publications Office of the European Union: Luxembourg, 2017; ISBN 978-92-79-71479-5. [Google Scholar]
Parameters | ||
---|---|---|
Mass flow rate of geothermal fluid | (kg/s) | 1 |
Temperature of geothermal fluid | (°C) | 230 |
Minimum reinjection temperature | (°C) | 70 |
Pinch-point temperature in geothermal circuit | (°C) | 10 |
Geothermal heat exchanger efficiency | (-) | 0.92 |
Geothermal pump efficiency | (-) | 0.70 |
ORC configuration | Transcritical | |
ORC working fluid | Isobutane | |
ORC maximum temperature range | (°C) | 140.0–220.0 |
ORC maximum pressure range | (bar) | 37.38–65.32 |
ORC condensation temperature | (°C) | 30.0 |
ORC condensation pressure | (bar) | 4.05 |
Maximum ORC pump efficiency | (-) | 0.70 |
Maximum ORC turbine efficiency | (-) | 0.80 |
Electro-mechanical efficiency | (-) | 0.95 |
Cooling pump efficiency | (-) | 0.80 |
Head of cooling pump | (m) | 10 |
Pinch-point temperature in cooling system | (°C) | 5 |
Heat exchanger inner tube diameter | (mm) | 10.92 |
Heat exchanger outer tube diameter | (mm) | 12.70 |
Gas-fired auxiliary boiler efficiency | (-) | 0.90 |
Natural gas lower heating value | (MJ/Sm3) | 34.54 |
Reference thermal efficiency | (-) | 0.92 |
Parameter | Heat Exchanger | Pump | Turbine |
---|---|---|---|
k1 | 4.3247 | 3.3892 | 2.2476 |
k2 | −0.3003 | 0.0536 | 1.4965 |
k3 | 0.1634 | 0.1538 | −0.1618 |
c1 | 0.0388 | −0.3935 | 0 |
c2 | −0.1127 | 0.3957 | 0 |
c3 | 0.0818 | −0.0023 | 0 |
b1 | 1.63 | 1.89 | - |
b2 | 1.66 | 1.35 | - |
FM | 1.00 | 1.60 | - |
FBM | - | - | 3.5 |
Parameter | Unit | Value |
---|---|---|
Investment Period | (Years) | 20 |
Interest rate | (%) | 2 |
Specific revenue for the saved thermal energy | (c€/kWhth) | 6.7 |
Specific revenue for the saved electricity | (c€/kWhel) | 18.8 |
Specific value of the electricity injected into the grid | (c€/kWh) | 10.0 |
Specific cost of the electricity withdrawn from the grid | (c€/kWh) | 18.8 |
Specific cost of natural gas | (c€/kWh) | 6.0 |
CEPCI2001 | (-) | 397.0 |
CEPCI2019 | (-) | 607.5 |
EUR/USD exchange rate | (EUR/USD) | 1.12 |
Maintenance cost/Investment cost | (%) | 2.0 |
Parameter | Unit | Value |
---|---|---|
Maximum Electric Power | (kWel) | 101.4 |
Maximum Thermal Power | (kWth) | 249.5 |
Electric Production | (MWhel) | 820.8 |
Thermal Production | (MWhth) | 357.4 |
Electric Self-consumption | (%) | 94.9 |
Electric Surplus | (%) | 59.0 |
Electric Integration | (%) | 5.1 |
Thermal Self-consumption | (%) | 90.2 |
Thermal Surplus | (%) | 0.0 |
Thermal Integration | (%) | 9.8 |
Global Electric Efficiency | (%) | 13.4 |
Energy Utilisation Factor | (%) | 19.3 |
Equivalent Operating hours | (h) | 8095 |
Natural gas consumption | (Sm3) | 4512.6 |
Natural gas saving | (Sm3) | 41,386.0 |
Initial investment | (k€) | 636.8 |
Net present value | (k€) | 1617.5 |
Payback period | (years) | 4.90 |
Reduced CO2 emissions | (tCO2) | 253.8 |
Reduced GHG emissions | (tCO2,eq) | 309.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morrone, P.; Algieri, A. Integrated Geothermal Energy Systems for Small-Scale Combined Heat and Power Production: Energy and Economic Investigation. Appl. Sci. 2020, 10, 6639. https://doi.org/10.3390/app10196639
Morrone P, Algieri A. Integrated Geothermal Energy Systems for Small-Scale Combined Heat and Power Production: Energy and Economic Investigation. Applied Sciences. 2020; 10(19):6639. https://doi.org/10.3390/app10196639
Chicago/Turabian StyleMorrone, Pietropaolo, and Angelo Algieri. 2020. "Integrated Geothermal Energy Systems for Small-Scale Combined Heat and Power Production: Energy and Economic Investigation" Applied Sciences 10, no. 19: 6639. https://doi.org/10.3390/app10196639
APA StyleMorrone, P., & Algieri, A. (2020). Integrated Geothermal Energy Systems for Small-Scale Combined Heat and Power Production: Energy and Economic Investigation. Applied Sciences, 10(19), 6639. https://doi.org/10.3390/app10196639