Camera Geolocation Using Digital Elevation Models in Hilly Area
Abstract
:1. Introduction
2. Related Work
2.1. Representation of Skyline
2.2. The Dataset of DEM
2.3. Skyline Retrieval
3. Difficulties in Locating Skyline Geolocation in Hilly Areas
3.1. Detailed Information of Skyline Affected by Dense Vegetation
3.2. Proximity of Camera to Skyline
4. Propose Method
4.1. Enhanced Angle Chain Code
4.2. Lapel Point
4.2.1. Extracting Lapels from Images
4.2.2. Extracting Lapels from DEM
4.3. Building DEM Skyline Feature Database
4.3.1. Sampling and Generating 3D Rendering Image
4.3.2. Divide into 24 Subsections
4.3.3. Get the Features of the Skylines
4.3.4. Get Heatmap of the Skyline Distance
4.3.5. Coarse Matching
4.3.6. Refined Matching
5. Experiment and Analysis
5.1. Dataset
5.2. Localization Performance
5.3. Robustness against Noise
5.4. Rotation Invariance
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Brejcha, J.; Cadik, M. State-of-the-art in visual geo-localization. Pattern Anal. Appl. 2017, 20, 613–637. [Google Scholar] [CrossRef]
- Gibbens, P.W.; Dumble, S.J. Efficient Terrain-Aided Visual Horizon Based Attitude Estimation and Localization. J. Intell. Robot. Syst. 2015, 78, 205–221. [Google Scholar]
- Ahmad, T.; Bebis, G.; Nicolescu, M.; Nefian, A.V.; Fong, T. An edge-less approach to horizon line detection. In Proceedings of the 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 9–11 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1095–1102. [Google Scholar]
- Porzi, L.; Rota Bulò, S.; Ricci, E. A deeply-supervised deconvolutional network for horizon line detection. In Proceedings of the 24th ACM International Conference on Multimedia, ACM, Amsterdam, The Netherlands, 15–19 October 2016; pp. 137–141. [Google Scholar]
- Verbickas, R.; Whitehead, A. Sky and ground detection using convolutional neural networks. In Proceedings of the International Conference on Machine Vision and Machine Learning (MVML), Prague, Czech Republic, 14–15 August 2014. [Google Scholar]
- Gupta, V.; Brennan, S. Terrain-based vehicle orientation estimation combining vision and inertial measurements. J. Field Robot. 2008, 25, 181–202. [Google Scholar] [CrossRef]
- Ho, N.; Chakravarty, J. Localization on freeways using the horizon line signature. In Proceedings of the International Conference on Robotics and Automation, Hong Kong, China, 31 May–5 June 2014; pp. 1–8. [Google Scholar]
- Dumble, S.J.; Gibbens, P.W. Horizon profile detection for attitude determination. J. Intell. Robot. Syst. 2012, 68, 339–357. [Google Scholar] [CrossRef]
- Neto, A.M.; Victorino, A.C.; Fantoni, I.; Zampieri, D.E. Robust horizon finding algorithm for real-time autonomous navigation based on monocular vision. In Proceedings of the 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, DC, USA, 5–7 October 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 532–537. [Google Scholar]
- Boroujeni, N.S.; Etemad, S.A.; Whitehead, A. Robust horizon detection using segmentation for UAV applications. In Proceedings of the 2012 Ninth Conference on Computer and Robot Vision, Toronto, ON, Canada, 28–30 May 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 346–352. [Google Scholar]
- McGee, T.G.; Sengupta, R.; Hedrick, K. Obstacle detection for small autonomous aircraft using sky segmentation. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 4679–4684. [Google Scholar]
- Thurrowgood, S.; Soccol, D.; Moore, R.J.D.; Bland, D.; Srinivasan, M.V. A vision based system for attitude estimation of UAVs. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 5725–5730. [Google Scholar]
- Grelsson, B.; Felsberg, M.; Isaksson, F. Highly accurate attitude estimation via horizon detection. J. Field Robot. 2016, 33, 967–993. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Li, B. An improved algorithm for horizon detection based on OSTU. In Proceedings of the 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2015; IEEE: Piscataway, NJ, USA, 2015; Volume 1, pp. 414–417. [Google Scholar]
- Di, L.; Fromm, T.; Chen, Y.Q. A data fusion system for attitude estimation of low-cost miniature UAVs. J. Intell. Robot. Syst. 2012, 65, 621–635. [Google Scholar] [CrossRef]
- Brejcha, J.; Čadík, M. GeoPose3K: Mountain landscape dataset for camera pose estimation in outdoor environments. Image Vis. Comput. 2017, 66, 1–14. [Google Scholar] [CrossRef]
- Saurer, O.; Baatz, G.; Köser, K.; Ladický, L.; Pollefeys, M. Image Based Geo-localization in the Alps. Int. J. Comput. Vis. 2016, 116, 213–225. [Google Scholar] [CrossRef]
- Brejcha, J.; Cadik, M. Camera Orientation Estimation in Natural Scenes Using Semantic Cues. In Proceedings of the International Conference on 3D Vision, Verona, Italy, 5–8 September 2018; pp. 208–217. [Google Scholar]
- Yang, M.; Kidiyo, K.; Joseph, R. A survey of shape feature extraction techniques. Pattern Recognit. 2008, 15, 43–90. [Google Scholar]
- Mokhtarian, F. Multi-scale description of space curves in three-dimensional objects. In Proceedings of the Conference on Computer Vision & Pattern Recognition, Ann Arbor, MI, USA, 5–9 June 1988; Cvpr. IEEE: Piscataway, NJ, USA, 1988. [Google Scholar]
- Chen, Y.; Qian, G.; Gunda, K.; Gupta, H.; Shafique, K. Camera geolocation from mountain images. In Proceedings of the International Conference on Information Fusion, Washington, DC, USA, 6–9 July 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Baatz, G.; Irani, M.; Vedaldi, A. Large Scale Visual Geo-Localization of Images in Mountainous Terrain. In Proceedings of the European Conference on Computer Vision, Firenze, Italy, 7–13 October 2012. [Google Scholar]
- Sassi, A.; Amar, C.B.; Miguet, S. Skyline-based approach for natural scene identification. In Proceedings of the Computer Systems & Applications, Agadir, Morocco, 29 November–2 December 2016. [Google Scholar]
- Tzeng, E.; Zhai, A.; Clements, M.; Townshend, R.; Zakhor, A. User-Driven Geolocation of Untagged Desert Imagery Using Digital Elevation Models. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Portland, OR, USA, 23–28 June 2013; pp. 237–244. [Google Scholar]
- Freeman, H. On the encoding of arbitrary geometric configurations. IRE Trans. Electron. Comput. 1961, EC-10, 260–268. [Google Scholar] [CrossRef]
- Arica, N.; Vural, F.T.Y. BAS: A perceptual shape descriptor based on the beam angle statistics. Pattern Recognit. Lett. 2008, 24, 1627–1639. [Google Scholar] [CrossRef]
- Ahmad, T.; Bebis, G.; Nicolescu, M.; Nefian, A.; Fong, T. Horizon line detection using supervised learning and edge cues. Comput. Vis. Image Underst. 2020, 191, 102879. [Google Scholar] [CrossRef]
Terrain | θ Value | Judgments Based 1 |
---|---|---|
Peak | data | |
Valley |
Subfeature Name | Subfeature Content |
---|---|
curvature enhanced angle chain code | D-E-F-G-G-G-G-G-H-I-J-K-J-J-H-G-E-E-E-E-F-E-E-F-G-G-H-I-I-I-I-I-H-H-G-G-G-G-G-G-F-G-F-E-F-F-F-F-G-H-H-H-H |
normal enhanced angle chain code | 9-A-A-A-B-A-A-A-A-9-9-8-8-8-8-7-7-7-7-8-8-8-8-8-8-8-8-8-7-7-6-6-6-5-5-5-5-5-5-5-5-5-5-5-5-5-6-5-5-5-5-5-5 |
Characteristics | Type |
---|---|
Left lapel point | |
Left lapel point |
Type Code | Distance Range |
---|---|
00 | [0, 800] |
01 | (800, 1500] |
10 | (1500, +∞) |
Parameters | Values |
---|---|
pitch | 4.49° |
row | −0.26° |
yaw | 356.42° |
latitude | 28.15135° |
longitude | 112.7574° |
satellites | 10 |
The Method of Increasing the Noise of Skyline |
---|
for i in range(len(skyline)): noise = random(0,maxNoise 1) skyline[i] = skyline[i] + noise |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Z.; Tang, J.; Tjahjadi, T.; Xiao, X.; Wu, Z. Camera Geolocation Using Digital Elevation Models in Hilly Area. Appl. Sci. 2020, 10, 6661. https://doi.org/10.3390/app10196661
Pan Z, Tang J, Tjahjadi T, Xiao X, Wu Z. Camera Geolocation Using Digital Elevation Models in Hilly Area. Applied Sciences. 2020; 10(19):6661. https://doi.org/10.3390/app10196661
Chicago/Turabian StylePan, Zhibin, Jin Tang, Tardi Tjahjadi, Xiaoming Xiao, and Zhihu Wu. 2020. "Camera Geolocation Using Digital Elevation Models in Hilly Area" Applied Sciences 10, no. 19: 6661. https://doi.org/10.3390/app10196661