Compact 50 W All-Solid-State Picosecond Laser System at 1 kHz
Abstract
:1. Introduction
2. Experiment and Results
2.1. Picosecond Oscillator
2.2. Regenerative Amplifier
2.3. End-Pumped Amplifier
2.4. Side-Pumped Amplifier
3. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hilinski, E.F.; Rentzepis, P.M. Biological applications of picosecond spectroscopy. Nature 1983, 302, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.; Schreiber, U.; Procházka, I.; Moore, C.; Degnan, J.; Kirchner, G.; Zhongping, Z.; Dunn, P.; Shargorodskiy, V.; Sadovnikov, M.; et al. The next generation of satellite laser ranging systems. J. Geod. 2019, 93, 2227–2247. [Google Scholar] [CrossRef]
- Ochi, Y.; Nagashima, K.; Maruyama, M.; Tsubouchi, M.; Yoshida, F.; Kohno, N.; Mori, M.; Sugiyama, A. Yb:YAG thin-disk chirped pulse amplification laser system for intense terahertz pulse generation. Opt. Express 2015, 23, 15057–15064. [Google Scholar] [CrossRef]
- Elu, U.; Baudisch, M.; Pires, H.; Tani, F.; Frosz, M.H.; Köttig, F.; Ermolov, A.; Russell, P.S.J.; Biegert, J. High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier. Optica 2017, 4, 1024–1029. [Google Scholar] [CrossRef]
- Noom, D.W.E.; Witte, S.; Morgenweg, J.; Altmann, R.K.; Eikema, K.S.E. High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system. Opt. Lett. 2013, 38, 3021–3023. [Google Scholar] [CrossRef]
- Michailovas, K.; Smilgevičius, V.; Michailovas, A. High average power effective pump source at 1kHz repetition rate for OPCPA system. Lith. J. Phys. 2014, 54, 150–154. [Google Scholar] [CrossRef] [Green Version]
- Budriūnas, R.; Stanislauskas, T.; Adamonis, J.; Aleknavičius, A.; Veitas, G.; Gadonas, D.; Balickas, S.; Michailovas, A.; Varanavičius, A. 53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate. Opt. Express 2017, 25, 5797–5806. [Google Scholar] [CrossRef]
- Jiaxing, L.; Wei, W.; Zhaohua, W.; Zhiguo, L.; Zhiyuan, Z.; Zhiyi, W. Diode-pumped high energy and high average power all-solid-state picosecond amplifier systems. Appl. Sci. 2015, 5, 1590–1602. [Google Scholar] [CrossRef] [Green Version]
- Yutao, H.; Hongbo, Z.; Xiaochao, Y.; Guangyan, G.; Zhenao, B.; Weiran, L.; Zhijun, K.; Jisi, Q.; Tianzhuo, Z.; Zhongwei, F. High-Brightness 100 Hz/363 mJ Picosecond Nd:YAG Laser System for Ultra-Remote Laser Ranging. IEEE J. Quantum Electron. 2020, 56, 1–10. [Google Scholar] [CrossRef]
- Ning, M.; Meng, C.; Ce, Y.; Shang, L.; Xie, Z.; Xinbiao, D. High-efficiency 50W burst-mode hundred picosecond green laser. High Power Laser Sci. Eng. 2020, 8, e1. [Google Scholar] [CrossRef] [Green Version]
- Xuesheng, L.; Wenzeng, J.; Yiheng, S.; Song, Y.; Shu, L.; Youqiang, L.; Anru, Y.; Zhiyong, W. High energy, high brightness picosecond master oscillator power amplifier with output power 65.5 W. Opt. Express 2020, 28, 8016–8026. [Google Scholar] [CrossRef]
- Robert, J.; Johannes, T.; Ingo, W. Regenerative thin-disk amplifier for 300 mJ pulse energy. Opt. Express 2016, 24, 883–887. [Google Scholar] [CrossRef]
- Jakub, N.; Jonathan, T.G.; Thomas, M.; Tomáš, M.; Bedřich, H.; Martin, H.; Zbyněk, H.; Robert, B.; Roman, A.; František, B.; et al. Thin disk amplifier-based 40 mJ, 1 kHz, picosecond laser at 515 nm. Opt. Express 2016, 24, 5728–5733. [Google Scholar] [CrossRef]
- Thomas, N.; Martin, K.; Moritz, U.; Martin, G.; Ayman, A.; Hanieh, F.; Jonathan, B.; Oleg, P.; Helena, G.B.; Zsuzsanna, M.; et al. 1 kW, 200 mJ picosecond thin-disk laser system. Opt. Lett. 2017, 42, 1381–1384. [Google Scholar] [CrossRef]
- Oliver, P.; Henrik, T.; James, J.M.; Peter, W.; Maik, F.; Jörg, N.; Dietmar, K. Intrinsic reduction of the depolarization in Nd:YAG crystals. Opt. Express 2010, 18, 20461–20474. [Google Scholar] [CrossRef]
- Clarkson, W.A.; Felgate, N.S.; Hanna, D.C. Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers. Opt. Lett. 1990, 24, 820–822. [Google Scholar] [CrossRef] [PubMed]
- Martin, O.; Damien, M.; Peter, J.V.; Jesper, M. Thermally induced birefringence in Nd:YAG slab lasers. Appl. Opt. 2006, 45, 5368–5376. [Google Scholar] [CrossRef] [Green Version]
- Fluck, R.; Hermann, M.R.; Hackel, L.A. Birefringence compensation in single solid-state rods. Appl. Phys. Lett. 2000, 76, 1513–1515. [Google Scholar] [CrossRef] [Green Version]
- Lü, Q.; Kugler, N.; Weber, H.; Dong, S.; Müller, N.; Wittrock, U. A novel approach for compensation of birefringence in cylindrical Nd:YAG rods. Opt. Quant. Electron. 1995, 28, 57–69. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Cui, Z.; Sun, Z.; Zhang, P.; Liu, D. Compact 50 W All-Solid-State Picosecond Laser System at 1 kHz. Appl. Sci. 2020, 10, 6891. https://doi.org/10.3390/app10196891
Yang S, Cui Z, Sun Z, Zhang P, Liu D. Compact 50 W All-Solid-State Picosecond Laser System at 1 kHz. Applied Sciences. 2020; 10(19):6891. https://doi.org/10.3390/app10196891
Chicago/Turabian StyleYang, Shuaishuai, Zijian Cui, Ziming Sun, Pan Zhang, and Dean Liu. 2020. "Compact 50 W All-Solid-State Picosecond Laser System at 1 kHz" Applied Sciences 10, no. 19: 6891. https://doi.org/10.3390/app10196891
APA StyleYang, S., Cui, Z., Sun, Z., Zhang, P., & Liu, D. (2020). Compact 50 W All-Solid-State Picosecond Laser System at 1 kHz. Applied Sciences, 10(19), 6891. https://doi.org/10.3390/app10196891