OPF/PMMA Cage System as an Alternative Approach for the Treatment of Vertebral Corpectomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. OPF Expandable Cage
2.1.1. OPF Synthesis
2.1.2. Fabrication and Expansion of Cages
2.1.3. Mechanical Testing
2.2. Kinematic Motion Testing on Spine
3. Results
3.1. Cages Testing
3.2. Cadaveric Testing
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Klimo, P., Jr.; Schmidt, M.H. Surgical management of spinal metastases. Oncologist 2004, 9, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Delank, K.S.; Wendtner, C.; Eich, H.T.; Eysel, P. The treatment of spinal metastases. Dtsch. Arztebl. Int. 2011, 108, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Laufer, I.; Sciubba, D.M.; Madera, M.; Bydon, A.; Witham, T.J.; Gokaslan, Z.L.; Wolinsky, J.P. Surgical management of metastatic spinal tumors. Cancer Control. 2012, 19, 122–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nathan, S.S.; Healey, J.H.; Mellano, D.; Hoang, B.; Lewis, I.; Morris, C.D.; Athanasian, E.A.; Boland, P.J. Survival in patients operated on for pathologic fracture: Implications for end-of-life orthopedic care. J. Clin. Oncol. 2005, 23, 6072–6082. [Google Scholar] [CrossRef] [PubMed]
- Acosta, F.L., Jr.; Buckley, J.M.; Xu, Z.; Lotz, J.C.; Ames, C.P. Biomechanical comparison of three fixation techniques for unstable thoracolumbar burst fractures. Laboratory investigation. J. Neurosurg. Spine 2008, 8, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, R.J.; Javalkar, V.; Patil, S.; Gonzalez-Cruz, J.; Ogden, A.; Mukherjee, D.; Nanda, A. Comparison of allograft bone and titanium cages for vertebral body replacement in the thoracolumbar spine: A biomechanical study. Neurosurgery 2010, 66, 314–318. [Google Scholar] [CrossRef]
- Elder, B.D.; Lo, S.F.; Kosztowski, T.A.; Goodwin, C.R.; Lina, I.A.; Locke, J.E.; Witham, T.F. A systematic review of the use of expandable cages in the cervical spine Comments. Neurosurg. Rev. 2016, 39, 1–11. [Google Scholar] [CrossRef]
- Thongtrangan, I.; Balabhadra, R.S.; Le, H.; Park, J.; Kim, D.H. Vertebral body replacement with an expandable cage for reconstruction after spinal tumor resection. Neurosurg. Focus 2003, 15, E8. [Google Scholar] [CrossRef]
- Wittenberg, R.H.; Moeller, J.; Shea, M.; White, A.A., 3rd; Hayes, W.C. Compressive strength of autologous and allogenous bone grafts for thoracolumbar and cervical spine fusion. Spine 1990, 15, 1073–1078. [Google Scholar] [CrossRef]
- Jeyamohan, S.; Vaccaro, A.; Harrop, J. Use of Expandable Cages in Metastasis to the Spine. JHN J. 2009, 4, 5–7. [Google Scholar] [CrossRef]
- An, H.S.; Lynch, K.; Toth, J. Prospective Comparison of Autograft vs. Allograft for Adult Posterolateral Lumbar Spine Fusion—Differences among Freeze-Dried, Frozen, and Mixed Grafts. J. Spinal Disord. 1995, 8, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Walsh, G.L.; Gokaslan, Z.L.; McCutcheon, I.E.; Mineo, M.T.; Yasko, A.W.; Swisher, S.G.; Schrump, D.S.; Nesbitt, J.C.; Putnam, J.B., Jr.; Roth, J.A. Anterior approaches to the thoracic spine in patients with cancer: Indications and results. Ann. Thorac. Surg. 1997, 64, 1611–1618. [Google Scholar] [CrossRef]
- Perrin, R.G.; McBroom, R.J. Anterior versus posterior decompression for symptomatic spinal metastasis. Can. J. Neurol. Sci. 1987, 14, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Aebi, M. Spinal metastasis in the elderly. Eur. Spine J. 2003, 12 (Suppl. S2), S202–S213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Paulsen, A.; Giambini, H.; Guo, J.; Miller, A.L.; Lin, P.-C.; Yaszemski, M.J.; Lu, L. A New Vertebral Body Replacement Strategy Using Expandable Polymeric Cages. Tissue Eng. Part A 2017, 23, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Ilharreborde, B.; Zhao, K.; Boumediene, E.; Gay, R.; Berglund, L.; An, K. A dynamic method for in vitro multisegment spine testing. Orthop. Traumatol. Surg. Res. 2010, 96, 456–461. [Google Scholar] [CrossRef] [Green Version]
- Ilharreborde, B.; Shaw, M.N.; Berglund, L.J.; Zhao, K.D.; Gay, R.E.; An, K.-N. Biomechanical evaluation of posterior lumbar dynamic stabilization: An in vitro comparison between Universal Clamp and Wallis systems. Eur. Spine J. 2011, 20, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.D.; Ben-Abraham, E.I.; Magnuson, D.J.; Camp, J.J.; Berglund, L.J.; An, K.-N.; Bronfort, G.; Gay, R.E. Effect of Off-Axis Fluoroscopy Imaging on Two-Dimensional Kinematics in the Lumbar Spine: A Dynamic in vitro Validation Study. J. Biomech. Eng. 2016, 138, 054502-1–054502-6. [Google Scholar] [CrossRef] [Green Version]
- Seaman, S.; Kerezoudis, P.; Bydon, M.; Torner, J.C.; Hitchon, P.W. Titanium vs. polyetheretherketone (PEEK) interbody fusion: Meta-analysis and review of the literature. J. Clin. Neurosci. 2017, 44, 23–29. [Google Scholar] [CrossRef]
- Wuisman, P.; Smit, T. Bioresorbable polymers: Heading for a new generation of spinal cages. Eur. Spine J. 2006, 15, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.; Temenoff, J.S.; Mikos, A.G. In vitro cytotoxicity of unsaturated oligo [poly (ethylene glycol) fumarate] macromers and their cross-linked hydrogels. Biomacromolecules 2003, 4, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.; Clark, E.C.; Fong, E.L.; Lee, E.J.; Lu, S.; Tabata, Y.; Mikos, A.G. Data describing the swelling behavior and cytocompatibility of biodegradable polyelectrolyte hydrogels incorporating poly (L-lysine) for applications in cartilage tissue engineering. Data Brief 2016, 7, 614–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piantanida, E.; Alonci, G.; Bertucci, A.; De Cola, L. Design of nanocomposite injectable hydrogels for minimally invasive surgery. Acc. Chem. Res. 2019, 52, 2101–2112. [Google Scholar] [CrossRef] [PubMed]
- Gaihre, B.; Liu, X.; Lee Miller, A.; Yaszemski, M.; Lu, L. Poly (Caprolactone Fumarate) and Oligo [Poly (Ethylene Glycol) Fumarate]: Two Decades of Exploration in Biomedical Applications. Polym. Rev. 2020, 1–38. [Google Scholar] [CrossRef]
- Perez-Cruet, M.J.; Fessler, R.G.; Perin, N.I. Complications of minimally invasive spinal surgery. Neurosurgery 2002, 51 (Suppl. S2), S2-26–S2-36. [Google Scholar]
Formulations | OPF (g) | NVP (mL) | BAPO (g) | CH2Cl2 (mL) |
---|---|---|---|---|
a | 1 | 0.1 | 0.05 | 2 |
b | 1 | 0.01 | 0.05 | 2 |
c | 1 | 0.001 | 0.05 | 2 |
d | 1 | 0.01 | 0.1 | 2 |
e | 1 | 0.001 | 0.1 | 2 |
f | 1 | 0 | 0.05 | 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezaei, A.; Giambini, H.; Miller, A.L., II; Liu, X.; Elder, B.D.; Yaszemski, M.J.; Lu, L. OPF/PMMA Cage System as an Alternative Approach for the Treatment of Vertebral Corpectomy. Appl. Sci. 2020, 10, 6912. https://doi.org/10.3390/app10196912
Rezaei A, Giambini H, Miller AL II, Liu X, Elder BD, Yaszemski MJ, Lu L. OPF/PMMA Cage System as an Alternative Approach for the Treatment of Vertebral Corpectomy. Applied Sciences. 2020; 10(19):6912. https://doi.org/10.3390/app10196912
Chicago/Turabian StyleRezaei, Asghar, Hugo Giambini, Alan L. Miller, II, Xifeng Liu, Benjamin D. Elder, Michael J. Yaszemski, and Lichun Lu. 2020. "OPF/PMMA Cage System as an Alternative Approach for the Treatment of Vertebral Corpectomy" Applied Sciences 10, no. 19: 6912. https://doi.org/10.3390/app10196912
APA StyleRezaei, A., Giambini, H., Miller, A. L., II, Liu, X., Elder, B. D., Yaszemski, M. J., & Lu, L. (2020). OPF/PMMA Cage System as an Alternative Approach for the Treatment of Vertebral Corpectomy. Applied Sciences, 10(19), 6912. https://doi.org/10.3390/app10196912