Assessment of Bacterial Contamination of Air at the Museum of King John III’s Palace at Wilanow (Warsaw, Poland): Selection of an Optimal Growth Medium for Analyzing Airborne Bacteria Diversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Bacterial Cultivation Experiments
2.3. Metagenomic DNA Isolation and Sequencing
2.4. Bioinformatics
2.5. Systematic Literature Review for the Detection of Genera Hosting Human Pathogens
2.6. Data Availability
3. Results and Discussion
3.1. Assessment of Bacterial Contamination of Air-Quantitative Analysis Using the Classical Microbiology Approach
3.2. Assessment of Bacterial Contamination of Air-Qualitative Analysis Using a Metagenomic Approach
3.3. Microbial Risk Assessment at the Museum Palace in Wilanow
3.3.1. Bacteria Potentially Involved in the Biodeterioration and Biodegradation of Historical Art Pieces
3.3.2. Putative Bacterial Pathogens
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wells, W.F. Airborne Contagion and Air Hygiene. An Ecological Study of Droplet Infections; Harvard University Press: Cambridge, UK, 1955. [Google Scholar]
- Górny, R.L.; Cyprowski, M.; Ławniczek-Wałczyk, A.; Gołofit-Szymczak, M.; Zapór, L. Biohazards in the Indoor Environment—A Role for Threshold Limit Values in Exposure Assessment. In The Management of Indoor Air Quality; Dudzinska, M.R., Ed.; CRC Press: Boca Raton, FL, USA, 2011; ISBN 9780415672665. [Google Scholar]
- Scaltriti, S.; Cencetti, S.; Rovesti, S.; Marchesi, I.; Bargellini, A.; Borella, P. Risk factors for particulate and microbial contamination of air in operating theatres. J. Hosp. Infect. 2007, 66, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Napoli, C.; Marcotrigiano, V.; Montagna, M.T. Air sampling procedures to evaluate microbial contamination: A comparison between active and passive methods in operating theatres. BMC Public Health 2012, 12, 594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayleeyesus, S.F.; Manaye, A.M. Microbiological quality of indoor air in university libraries. Asian Pac. J. Trop. Biomed. 2014, 4, S312–S317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovats, N.; Horvath, E.; Jancsek-Turoczi, B.; Hoffer, A.; Gelencser, A.; Urban, P.; Kiss, I.E.; Bihari, Z.; Fekete, C. Microbiological characterization of stable resuspended dust. Int. J. Occup. Med. Environ. Health 2016, 29, 375–380. [Google Scholar] [CrossRef]
- Valeriani, F.; Cianfanelli, C.; Gianfranceschi, G.; Santucci, S.; Romano Spica, V.; Mucci, N. Monitoring biodiversity in libraries: A pilot study and perspectives for indoor air quality. J. Prev. Med. Hyg. 2017, 58, E238–E251. [Google Scholar]
- Taberlet, P.; Coissac, E.; Pompanon, F.; Brochmann, C.; Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 2012, 21, 2045–2050. [Google Scholar] [CrossRef]
- Tarsitani, G.; Moroni, C.; Cappitelli, F.; Pasquariello, G.; Maggi, O. Microbiological analysis of surfaces of Leonardo da Vinci’s Atlantic Codex: Biodeterioration risk. Int. J. Microbiol. 2014. [Google Scholar] [CrossRef] [Green Version]
- Pinar, G.; Krakova, L.; Pangallo, D.; Piombino-Mascali, D.; Maixner, F.; Zink, A.; Sterflinger, K. Halophilic bacteria are colonizing the exhibition areas of the Capuchin Catacombs in Palermo, Italy. Extremophiles 2014, 18, 677–691. [Google Scholar] [CrossRef] [Green Version]
- Saiz-Jimenez, C.; Miller, A.Z.; Martin-Sanchez, P.M.; Hernandez-Marine, M. Uncovering the origin of the black stains in Lascaux Cave in France. Environ. Microbiol. 2012, 14, 3220–3231. [Google Scholar] [CrossRef] [Green Version]
- Kusumi, A.; Li, X.; Osuga, Y.; Kawashima, A.; Gu, J.-D.; Nasu, M.; Katayama, Y. Bacterial communities in pigmented biofilms formed on the sandstone bas-relief walls of the Bayon Temple, Angkor Thom, Cambodia. Microbes Environ. 2013, 28, 422–431. [Google Scholar] [CrossRef] [Green Version]
- Osimani, A.; Aquilanti, L.; Tavoletti, S.; Clementi, F. Microbiological monitoring of air quality in a university canteen: An 11-year report. Environ. Monit. Assess. 2013, 185, 4765–4774. [Google Scholar] [CrossRef] [PubMed]
- Giovannoni, S.J.; Britschgi, T.B.; Moyer, C.L.; Field, K.G. Genetic diversity in Sargasso Sea bacterioplankton. Nature 1990, 345, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Ward, D.M.; Weller, R.; Bateson, M.M. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 1990, 345, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Hugenholtz, P. Exploring prokaryotic diversity in the genomic era. Genome Biol. 2002, 3, reviews0003-1. [Google Scholar] [CrossRef] [Green Version]
- Mirhoseini, S.H.; Nikaeen, M.; Khanahmad, H.; Hassanzadeh, A. Occurrence of airborne vancomycin- and gentamicin-resistant bacteria in various hospital wards in Isfahan, Iran. Adv. Biomed. Res. 2016, 5, 143. [Google Scholar] [CrossRef]
- Herfst, S.; Bohringer, M.; Karo, B.; Lawrence, P.; Lewis, N.S.; Mina, M.J.; Russell, C.J.; Steel, J.; de Swart, R.L.; Menge, C. Drivers of airborne human-to-human pathogen transmission. Curr. Opin. Virol. 2017, 22, 22–29. [Google Scholar] [CrossRef]
- Luongo, J.C.; Fennelly, K.P.; Keen, J.A.; Zhai, Z.J.; Jones, B.W.; Miller, S.L. Role of mechanical ventilation in the airborne transmission of infectious agents in buildings. Indoor Air 2016, 26, 666–678. [Google Scholar] [CrossRef]
- Dyda, M.; Decewicz, P.; Romaniuk, K. International Biodeterioration & Biodegradation Application of metagenomic methods for selection of an optimal growth medium for bacterial diversity analysis of microbiocenoses on historical stone surfaces. Int. Biodeterior. Biodegrad. 2017, 2–10. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Holmes, S.P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017, 11, 2639–2643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Waskom, M.; Botvinnik, O.; Ostblom, J.; Saulius, L.; Hobson, P. Mwaskom/Seaborn:v0.10.0 2020. Available online: https://github.com/mwaskom/seaborn/tree/v0.9.0 (accessed on 11 October 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio, PBC: Boston, MA, USA, 2015. [Google Scholar]
- Grisoli, P.; Albertoni, M.; Rodolfi, M. Application of airborne microorganism indexes in offices, gyms, and libraries. Appl. Sci. 2019, 9, 1101. [Google Scholar] [CrossRef] [Green Version]
- Godish, D.R.; Godish, T.J. Relationship between sampling duration and concentration of culturable airborne mould and bacteria on selected culture media. J. Appl. Microbiol. 2007, 102, 1479–1484. [Google Scholar] [CrossRef]
- Dacarro, C.; Picco, A.M.; Grisoli, P.; Rodolfi, M. Determination of aerial microbiological contamination in scholastic sports environments. J. Appl. Microbiol. 2003, 95, 904–912. [Google Scholar] [CrossRef] [Green Version]
- Hyvärinen, A.M.; Martikainen, P.J.; Nevalainen, A.I. Suitability of poor medium in counting total viable airborne bacteria. Grana 1991, 30, 414–417. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Bogacka, M.; Pikoń, K. Efficiency and eco-costs of air purifiers in terms of improving microbiological indoor air quality in dwellings—A case study. Atmosphere 2019, 10, 742. [Google Scholar] [CrossRef] [Green Version]
- Brągoszewska, E.; Biedroń, I.; Kozielska, B.; Pastuszka, J.S. Microbiological indoor air quality in an office building in Gliwice, Poland: Analysis of the case study. Air Qual. Atmos. Heal. 2018, 11, 729–740. [Google Scholar] [CrossRef] [Green Version]
- Kalwasińska, A.; Burkowska, A.; Wilk, I. Microbial air contamination in indoor environment of a university library. Ann. Agric. Environ. Med. 2012, 19, 25–29. [Google Scholar] [PubMed]
- Castelino, M.; Eyre, S.; Moat, J.; Fox, G.; Martin, P.; Ho, P.; Upton, M.; Barton, A. Optimisation of methods for bacterial skin microbiome investigation: Primer selection and comparison of the 454 versus MiSeq platform. BMC Microbiol. 2017, 17, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzoli, R.; Giuffrida, M.G.; Pessione, E. Back to the past: “Find the guilty bug-microorganisms involved in the biodeterioration of archeological and historical artifacts”. Appl. Microbiol. Biotechnol. 2018, 102, 6393–6407. [Google Scholar] [CrossRef] [PubMed]
- Szostak-Kotowa, J. Biodeterioration of textiles. Int. Biodeterior. Biodegradation 2004, 53, 165–170. [Google Scholar] [CrossRef]
- Sterflinger, K.; Piñar, G. Microbial deterioration of cultural heritage and works of art--tilting at windmills? Appl. Microbiol. Biotechnol. 2013, 97, 9637–9646. [Google Scholar] [CrossRef] [Green Version]
- Caselli, E.; Pancaldi, S.; Baldisserotto, C.; Petrucci, F.; Impallaria, A.; Volpe, L.; D’Accolti, M.; Soffritti, I.; Coccagna, M.; Sassu, G.; et al. Characterization of biodegradation in a 17th century easel painting and potential for a biological approach. PLoS ONE 2018, 13, e0207630. [Google Scholar] [CrossRef]
- Saarela, M.; Alakomi, H.-L.; Suihko, M.-L.; Maunuksela, L.; Raaska, L.; Mattila-Sandholm, T. Heterotrophic microorganisms in air and biofilm samples from Roman catacombs, with special emphasis on actinobacteria and fungi. Int. Biodeterior. Biodegrad. 2004, 54, 27–37. [Google Scholar] [CrossRef]
- Sorlini, C.; Zanardini, E.; Albo, S.; Praderio, G.; Cariati, F.; Bruni, S. Research on chromatic alterations of marbles from the fountain of Villa Litta (Lainate, Milan). Int. Biodeterior. Biodegrad. 1994, 33, 153–164. [Google Scholar] [CrossRef]
- Nilsson, T.; Björdal, C.; Fällman, E. Culturing erosion bacteria: Procedures for obtaining purer cultures and pure strains. Int. Biodeterior. Biodegrad. 2008, 61, 17–23. [Google Scholar] [CrossRef]
- Palla, F.; Mancuso, F.P.; Billeci, N. Multiple approaches to identify bacteria in archaeological waterlogged wood. J. Cult. Herit. 2013, 14, e61–e64. [Google Scholar] [CrossRef] [Green Version]
- Pasquarella, C.; Balocco, C.; Pasquariello, G.; Petrone, G.; Saccani, E.; Manotti, P.; Ugolotti, M.; Palla, F.; Maggi, O.; Albertini, R. A multidisciplinary approach to the study of cultural heritage environments: Experience at the Palatina Library in Parma. Sci. Total Environ. 2015, 536, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Heyrman, J.; Swings, J. 16S rDNA sequence analysis of bacterial isolatesfrom biodeteriorated mural paintings in the Servilia tomb (Necropolis of Carmona, Seville, Spain). Syst. Appl. Microbiol. 2001, 24, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.W. The effect of environmental parameters on the survival of airborne infectious agents. J. R. Soc. Interface 2009, 6 (Suppl. 6), S737–S746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.M.N.; Ilef, D.; Jarraud, S.; Rouil, L.; Campese, C.; Che, D.; Haeghebaert, S.; Ganiayre, F.; Marcel, F.; Etienne, J.; et al. A community-wide outbreak of legionnaires disease linked to industrial cooling towers--how far can contaminated aerosols spread? J. Infect. Dis. 2006, 193, 102–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fronczek, C.F.; Yoon, J.-Y. Biosensors for monitoring airborne pathogens. J. Lab. Autom. 2015, 20, 390–410. [Google Scholar] [CrossRef] [Green Version]
- Nuermberger, E.; Bishai, W.R.; Grosset, J.H. Latent tuberculosis infection. Semin. Respir. Crit. Care Med. 2004, 25, 317–336. [Google Scholar] [CrossRef] [Green Version]
- Jun, S.-R.; Wassenaar, T.M.; Nookaew, I.; Hauser, L.; Wanchai, V.; Land, M.; Timm, C.M.; Lu, T.-Y.S.; Schadt, C.W.; Doktycz, M.J.; et al. Diversity of Pseudomonas genomes, including populus-associated isolates, as revealed by comparative genome analysis. Appl. Environ. Microbiol. 2016, 82, 375–383. [Google Scholar] [CrossRef] [Green Version]
- Haag, A.F.; Fitzgerald, J.R.; Penadés, J.R. Staphylococcus aureus in animals. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Stefani, S.; Campana, S.; Cariani, L.; Carnovale, V.; Colombo, C.; Lleo, M.M.; Iula, V.D.; Minicucci, L.; Morelli, P.; Pizzamiglio, G.; et al. Relevance of multidrug-resistant Pseudomonas aeruginosa infections in cystic fibrosis. Int. J. Med. Microbiol. 2017, 307, 353–362. [Google Scholar] [CrossRef]
- Gani, M.; Rao, S.; Miller, M.; Scoular, S. Pseudomonas mendocina bacteremia: A case study and review of literature. Am. J. Case Rep. 2019, 20, 453–458. [Google Scholar] [CrossRef]
- Natsis, N.E.; Cohen, P.R. Coagulase-negative Staphylococcus skin and soft tissue infections. Am. J. Clin. Dermatol. 2018, 19, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Mukerji, R.; Kakarala, R.; Smith, S.J.; Kusz, H.G. Chryseobacterium indologenes: An emerging infection in the USA. BMJ Case Rep. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antunes, L.C.S.; Visca, P.; Towner, K.J. Acinetobacter baumannii: Evolution of a global pathogen. Pathog. Dis. 2014, 71, 292–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pour, N.K.; Dusane, D.H.; Dhakephalkar, P.K.; Zamin, F.R.; Zinjarde, S.S.; Chopade, B.A. Biofilm formation by Acinetobacter baumannii strains isolated from urinary tract infection and urinary catheters. FEMS Immunol. Med. Microbiol. 2011, 62, 328–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Taxonomic Rank | NA | LB | BHI | BA | FA | R2A | YEA |
---|---|---|---|---|---|---|---|
Genera | 54 | 55 | 45 | 49 | 71 | 63 | 27 |
Families | 30 | 30 | 29 | 30 | 38 | 38 | 21 |
Orders | 17 | 16 | 15 | 16 | 20 | 21 | 12 |
Classes | 6 | 5 | 5 | 6 | 5 | 7 | 5 |
Row No. | Media Combination * | Percent of All Genera Detected ** | Genera Detected |
---|---|---|---|
1 | FA | 64.62% | Acinetobacter, Aerococcus, Agrococcus, Algoriphagus, Amaricoccus, Arthrobacter, Aureimonas, Bacillus, Bosea, Brachybacterium, Brevibacillus, Brevibacterium, Brevundimonas, Candidatus Paracaedibacter, Carnobacterium, Caulobacter, Chryseobacterium, Corynebacterium, Cupriavidus, Devosia, Dyadobacter, Enhydrobacter, Enterococcus, Exiguobacterium, Fictibacillus, Flavihumibacter, Flavobacterium, Glutamicibacter, Gordonia, Hydrogenophaga, Hymenobacter, Jeotgalicoccus, Kocuria, Kytococcus, Lactococcus, Luteimonas, Lysinibacillus, Lysobacter, Macrococcus, Marmoricola, Massilia, Methylobacterium, Microbacterium, Micrococcus, Mycobacterium, Nakamurella, Nocardioides, Novosphingobium, Oceanobacillus, Paenarthrobacter, Paenibacillus, Paeniglutamicibacter, Paenisporosarcina, Pantoea, Paracoccus, Pedobacter, Pseudomonas, Pseudorhodobacter, Pseudoxanthomonas, Psychrobacillus, Psychrobacter, Ralstonia, Rhizobacter, Rhizobium, Rhodobacter, Rhodococcus, Rhodoferax, Roseomonas, Rothia, Rummeliibacillus, Skermanella, Sphingobacterium, Sphingobium, Sphingomonas, Sphingopyxis, Sphingorhabdus, Sporosarcina, Staphylococcus, Stenotrophomonas, Streptococcus, Trichococcus, Truepera, Variovorax, Williamsia |
2 | FA, R2A | 80.77% | Row no. 1 + Aeromicrobium, Agromyces, Cellulomonas, Cloacibacterium, Cohnella, Curtobacterium, Deinococcus, Dermacoccus, Dietzia, Escherichia-Shigella, Microvirga, Ornithinibacillus, Parasegetibacter, Planomicrobium, Porphyrobacter, Pseudarthrobacter, Pseudoclavibacter, Sanguibacter, Shinella, Solibacillus, Timonella |
3 | FA, R2A, LB | 89.23% | Row no. 2 + Achromobacter, Clostridioides, Desemzia, Domibacillus, Enterobacter, Gracilibacillus, Kaistia, Leucobacter, Terribacillus, Vagococcus, Verticia |
4 | FA, R2A, 0LB, NA | 93.85% | Row no. 3 + Aneurinibacillus, Bergeyella, Cellulosimicrobium, Nosocomiicoccus, Phenylobacterium, Streptomyces |
5 | FA, R2A, LB, NA, BA | 96.92% | Row no. 4 + Acidovorax, Lechevalieria, Ochrobactrum, Promicromonospora |
6 | FA, R2A, LB, NA, BA, BHI | 99.23% | Row no. 5 + Dermabacter, Marinilactibacillus, Virgibacillus |
7 | FA, R2A, LB, NA, BA, BHI, YEA | 100% | Row no. 6 + Leuconostoc |
Medium | No. of Genera | Genera Containing Human Pathogens |
---|---|---|
FA | 46 | Acinetobacter, Aerococcus, Agrococcus, Arthrobacter, Aureimonas, Bacillus, Bosea, Brachybacterium, Brevibacillus, Brevibacterium, Brevundimonas, Caulobacter, Chryseobacterium, Corynebacterium, Cupriavidus, Devosia, Enterococcus, Exiguobacterium, Flavobacterium, Gordonia, Kocuria, Kytococcus, Lactococcus, Macrococcus, Massilia, Methylobacterium, Microbacterium, Micrococcus, Mycobacterium, Novosphingobium, Paenibacillus, Pantoea, Paracoccus, Pseudomonas, Psychrobacter, Ralstonia, Rhizobium, Rhodococcus, Roseomonas, Rothia, Sphingobacterium, Sphingomonas, Staphylococcus, Stenotrophomonas, Streptococcus, Williamsia |
R2A | 46 | Acinetobacter, Aerococcus, Agrococcus, Arthrobacter, Aureimonas, Bacillus, Brachybacterium, Brevibacillus, Brevibacterium, Brevundimonas, Caulobacter, Cellulomonas, Chryseobacterium, Corynebacterium, Curtobacterium, Dermacoccus, Dietzia, Enterococcus, Escherichia-Shigella, Exiguobacterium, Gordonia, Kocuria, Kytococcus, Lactococcus, Macrococcus, Massilia, Methylobacterium, Microbacterium, Micrococcus, Mycobacterium, Ornithinibacillus, Paenibacillus, Pantoea, Paracoccus, Pseudoclavibacter, Pseudomonas, Psychrobacter, Ralstonia, Rhizobium, Rhodococcus, Roseomonas, Rothia, Sphingomonas, Staphylococcus, Stenotrophomonas, Streptococcus |
NA | 42 | Acinetobacter, Aerococcus, Arthrobacter, Aureimonas, Bacillus, Bergeyella, Brachybacterium, Brevibacillus, Brevibacterium, Brevundimonas, Cellulosimicrobium, Chryseobacterium, Clostridioides, Corynebacterium, Curtobacterium, Dermacoccus, Dietzia, Enterococcus, Exiguobacterium, Gordonia, Kocuria, Kytococcus, Macrococcus, Massilia, Microbacterium, Micrococcus, Novosphingobium, Paenibacillus, Paracoccus, Pseudomonas, Psychrobacter, Ralstonia, Rhizobium, Rhodococcus, Roseomonas, Rothia, Sphingobacterium, Sphingomonas, Staphylococcus, Stenotrophomonas, Streptococcus, Streptomyces |
LB | 40 | Achromobacter, Acinetobacter, Aerococcus, Agrococcus, Aureimonas, Bacillus, Brachybacterium, Brevibacillus, Brevibacterium, Brevundimonas, Chryseobacterium, Clostridioides, Corynebacterium, Cupriavidus, Dietzia, Enterobacter, Enterococcus, Escherichia-Shigella, Exiguobacterium, Kocuria, Kytococcus, Macrococcus, Massilia, Microbacterium, Micrococcus, Paenibacillus, Pantoea, Paracoccus, Pseudomonas, Psychrobacter, Ralstonia, Rhizobium, Rhodococcus, Roseomonas, Rothia, Sphingomonas, Staphylococcus, Stenotrophomonas, Streptococcus, Vagococcus |
BHI | 37 | Achromobacter, Acinetobacter, Aerococcus, Aureimonas, Bacillus, Brachybacterium, Brevibacterium, Brevundimonas, Cellulosimicrobium, Corynebacterium, Curtobacterium, Dermabacter, Dermacoccus, Dietzia, Enterobacter, Enterococcus, Exiguobacterium, Kocuria, Kytococcus, Macrococcus, Massilia, Microbacterium, Micrococcus, Novosphingobium, Paenibacillus, Pantoea, Paracoccus, Pseudomonas, Psychrobacter, Ralstonia, Roseomonas, Rothia, Sphingobacterium, Staphylococcus, Stenotrophomonas, Streptococcus, Streptomyces |
BA | 37 | Acidovorax, Acinetobacter, Aerococcus, Arthrobacter, Aureimonas, Bacillus, Brachybacterium, Brevibacillus, Brevibacterium, Brevundimonas, Cellulomonas, Chryseobacterium, Corynebacterium, Curtobacterium, Dietzia, Enterococcus, Kocuria, Macrococcus, Massilia, Microbacterium, Micrococcus, Mycobacterium, Ochrobactrum, Paenibacillus, Pantoea, Paracoccus, Pseudomonas, Ralstonia, Rhizobium, Rhodococcus, Roseomonas, Rothia, Sphingobacterium, Sphingomonas, Staphylococcus, Stenotrophomonas, Streptococcus |
YEA | 19 | Acinetobacter, Bacillus, Brachybacterium, Brevibacterium, Brevundimonas, Corynebacterium, Dietzia, Exiguobacterium, Kocuria, Leuconostoc, Massilia, Microbacterium, Micrococcus, Paenibacillus, Paracoccus, Pseudomonas, Ralstonia, Roseomonas, Staphylococcus |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziurzynski, M.; Ciuchcinski, K.; Dyda, M.; Szych, A.; Drabik, P.; Laudy, A.; Dziewit, L. Assessment of Bacterial Contamination of Air at the Museum of King John III’s Palace at Wilanow (Warsaw, Poland): Selection of an Optimal Growth Medium for Analyzing Airborne Bacteria Diversity. Appl. Sci. 2020, 10, 7128. https://doi.org/10.3390/app10207128
Dziurzynski M, Ciuchcinski K, Dyda M, Szych A, Drabik P, Laudy A, Dziewit L. Assessment of Bacterial Contamination of Air at the Museum of King John III’s Palace at Wilanow (Warsaw, Poland): Selection of an Optimal Growth Medium for Analyzing Airborne Bacteria Diversity. Applied Sciences. 2020; 10(20):7128. https://doi.org/10.3390/app10207128
Chicago/Turabian StyleDziurzynski, Mikolaj, Karol Ciuchcinski, Magdalena Dyda, Anna Szych, Paulina Drabik, Agnieszka Laudy, and Lukasz Dziewit. 2020. "Assessment of Bacterial Contamination of Air at the Museum of King John III’s Palace at Wilanow (Warsaw, Poland): Selection of an Optimal Growth Medium for Analyzing Airborne Bacteria Diversity" Applied Sciences 10, no. 20: 7128. https://doi.org/10.3390/app10207128