Software-Defined Radio Beamforming System for 5G/Radar Applications
Abstract
:1. Introduction
2. System Architecture
2.1. Digital Component
2.2. Analog Component
2.2.1. RF Frontend Modules
2.2.2. Planar Antenna Array 4 × 4
3. Beamforming Processing
3.1. Beam Steerin
3.2. Beam Shaping
4. Measurement Setup and Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hong, W.; Jiang, Z.H.; Yu, C.; Zhou, J.; Chen, P.; Yu, Z.; Zhang, H.; Yang, B.; Pang, X.; Jiang, M.; et al. Multibeam Antenna Technologies for 5G Wireless Communications. IEEE Trans. Antennas Propag. 2017, 65, 6231–6249. [Google Scholar] [CrossRef]
- Shafi, M.; Molisch, A.F.; Smith, P.J.; Haustein, T.; Zhu, P.; De Silva, P.; Tufvesson, F.; Benjebbour, A.; Wunder, G. 5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice. IEEE J. Sel. Areas Commun. 2017, 35, 1201–1221. [Google Scholar] [CrossRef]
- Bechter, J.; Rameez, M.; Waldschmidt, C. Analytical and Experimental Investigations on Mitigation of Interference in a DBF MIMO Radar. IEEE Trans. Microw. Theory Tech. 2017, 65, 1727–1734. [Google Scholar] [CrossRef]
- Bechter, J.; Eid, K.; Roos, F.; Waldschmidt, C. Digital beamforming to mitigate automotive radar interference. In Proceedings of the 2016 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), San Diego, CA, USA, 19–20 May 2016; pp. 1–4. [Google Scholar]
- Sturdivant, R.L.; Chang, E.; Bartholomew, D.; Brown, R.A.; De Pillis-Lindheim, S.; Rohweller, J.D. Systems Engineering a Low Cost Digital Beam Formed Phased Array for IoT Connectivity. In Proceedings of the 2017 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 14–16 December 2017; pp. 1393–1395. [Google Scholar]
- Lee, S.; Joo, J.; Choi, J.; Kim, W.; Kwon, H.; Lee, S.; Kwon, Y.; Jeong, J.; Joo, J. W-Band Multichannel FMCW Radar Sensor with Switching-TX Antennas. IEEE Sens. J. 2016, 16, 5572–5582. [Google Scholar] [CrossRef]
- Younis, M.; Fischer, C.; Wiesbeck, W. Digital beamforming in sar systems. IEEE Trans. Geosci. Remote. Sens. 2003, 41, 1735–1739. [Google Scholar] [CrossRef]
- Herd, J.S.; Conway, M.D. The Evolution to Modern Phased Array Architectures. Proc. IEEE 2015, 104, 519–529. [Google Scholar] [CrossRef]
- Talisa, S.H.; O’Haver, K.W.; Comberiate, T.M.; Sharp, M.D.; Somerlock, O.F. Benefits of Digital Phased Array Radars. Proc. IEEE 2016, 104, 530–543. [Google Scholar] [CrossRef]
- Lynch, J.J.; Kona, K.S.; Nagele, R.G.; Virbila, G.L.; Bowen, R.L.; Wetzel, M.D. 128 Element Coded Aperture Radar at 77 GHz. In Proceedings of the 2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Munich, Germany, 15–17 April 2018; pp. 1–4. [Google Scholar]
- Gaydos, D.; Nayeri, P.; Haupt, R. Experimental Comparison of Digital Beamforming Interference Cancellation Algorithms using a Software Defined Radio Array. In Proceedings of the 2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), Boulder, CO, USA, 9–12 January 2019; pp. 1–2. [Google Scholar]
- Diaz, J.D.; Salazar-Cerreno, J.L.; Ortiz, J.A.; Aboserwal, N.A.; Lebrón, R.M.; Fulton, C.; Palmer, R.D. A Cross-Stacked Radiating Antenna with Enhanced Scanning Performance for Digital Beamforming Multifunction Phased-Array Radars. IEEE Trans. Antennas Propag. 2018, 66, 5258–5267. [Google Scholar] [CrossRef]
- Geng, Z.; Deng, H.; Himed, B. Adaptive Radar Beamforming for Interference Mitigation in Radar-Wireless Spectrum Sharing. IEEE Signal. Process. Lett. 2014, 22, 484–488. [Google Scholar] [CrossRef]
- Sadhu, B.; Paidimarri, A.; Ferriss, M.; Yeck, M.; Gu, X.; Valdes-Garcia, A. A 128-element Dual-Polarized Software-Defined Phased Array Radio for mm-wave 5G Experimentation. In Proceedings of the 2nd ACM Workshop on Millimeter Wave Networks and Sensing Systems—mmNets ’18, New Delhi, India, 29 October 2018; pp. 21–25. [Google Scholar]
- Johnson, M.; Dascuru, A.; Zhan, K.; Galioglu, A.; Adepu, N.; Jain, S.; Krishnaswamy, H.; Natarajan, A. A 4-element 28 GHz Millimeter-wave MIMO Array with Single-wire Interface using Code-Domain Multiplexing in 65 nm CMOS. In Proceedings of the 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA, USA, 2–4 June 2019; pp. 243–246. [Google Scholar]
- Pulipati, S.; Ariyarathna, V.; De Silva, U.; Akram, N.; Alwan, E.; Madanayake, A.; Mandal, S.; Rappaport, T.S. A Direct-Conversion Digital Beamforming Array Receiver with 800 MHz Channel Bandwidth at 28 GHz using Xilinx RF SoC. In Proceedings of the 2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel-Aviv, Israel, 4–6 November 2019; pp. 1–5. [Google Scholar]
- Yang, B.; Yu, Z.; Lan, J.; Zhang, R.; Zhou, J.; Hong, W. Digital Beamforming-Based Massive MIMO Transceiver for 5G Millimeter-Wave Communications. IEEE Trans. Microw. Theory Tech. 2018, 66, 3403–3418. [Google Scholar] [CrossRef]
- Yu, Y.; Hong, W.; Jiang, Z.H.; Zhang, H.; Guo, C. Multibeam Generation and Measurement of a DDS-Based Digital Beamforming Array Transmitter at Ka-Band. IEEE Trans. Antennas Propag. 2019, 67, 3030–3039. [Google Scholar] [CrossRef]
- Wu, Y.M.; Ke, C.-Y.; Wang, C.C.; Tang, Y.H.; Chen, Y.-W.; Li, C.-T.; Chang, L.-H.; Chu, C.-Y.; Su, B.; Chu, T.-S.; et al. An X-band Scalable 4 × 4 Digital Phased Array Module using RF SoC and Antenna-in-Package. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019; pp. 1–6. [Google Scholar]
- Peng, Z.; Ran, L.; Li, C. A 24-GHz low-cost continuous beam steering phased array for indoor smart radar. In Proceedings of the 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS), Fort Collins, CO, USA, 2–5 August 2015; pp. 6–9. [Google Scholar]
- Wei, Z.; Ng, D.W.K.; Yuan, J. Beamwidth Control for NOMA in Hybrid mmWave Communication Systems. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Zhang, R.; Zhou, J.; Lan, J.; Yang, B.; Yu, Z. A High-Precision Hybrid Analog and Digital Beamforming Transceiver System for 5G Millimeter-Wave Communication. IEEE Access 2019, 7, 83012–83023. [Google Scholar] [CrossRef]
- Xiong, W.; Lu, J.; Tian, X.; Chen, G.; Pham, K.; Blasch, E. Cognitive radio testbed for Digital Beamforming of satellite communication. In Proceedings of the 2017 Cognitive Communications for Aerospace Applications Workshop (CCAA), Cleveland, OH, USA, 27–28 June 2017; pp. 1–5. [Google Scholar]
- Arruela, R.; Marinho, D.; Varum, T.; Matos, J.N. A Ka-band Frontend for mmWave MIMO and Beam forming Applications. In Proceedings of the IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Aveiro, Portugal, 10–14 November 2019; pp. 1–3. Available online: https://www.it.pt/Publications/DownloadPaperConference/35051 (accessed on 14 October 2020).
- Marinho, D.; Arruela, R.; Varum, T.; Matos, J.N. Application of Digital Beamforming to Software Defined Radio 5G / Radar Systems. In Proceedings of the IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Aveiro, Portugal, 10–14 November 2019; pp. 1–3. Available online: https://www.it.pt/Publications/DownloadPaperConference/35052 (accessed on 14 October 2020).
- Varum, T.; Ramos, A.; Matos, J.N. Planar microstrip series-fed array for 5G applications with beamforming capabilities. In Proceedings of the 2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G), Dublin, Ireland, 30–31 August 2018; pp. 1–3. [Google Scholar]
- Balanis, A.C. Antenna Theory Analysis and Design, 4th ed.; John Wiley & Sons: New York, NY, USA, 2016. [Google Scholar]
40 | 0 | 173 | 346 | 519 |
30 | 0 | 135 | 270 | 405 |
20 | 0 | 92 | 184 | 276 |
10 | 0 | 47 | 94 | 141 |
0 | 0 | 0 | 0 | 0 |
−10 | 0 | −47 | −94 | −141 |
−20 | 0 | −92 | −184 | −276 |
−30 | 0 | −135 | −270 | −405 |
−40 | 0 | −173 | −347 | −519 |
Weight Method | a1 | a2 | a3 | a4 |
---|---|---|---|---|
Uniform | 1 | 1 | 1 | 1 |
Binomial | 1 | 3 | 3 | 1 |
Dolph–Tschebyscheff (−15 dB) | 1 | 1.33 | 1.33 | 1 |
Dolph–Tschebyscheff (−20 dB) | 1 | 1.74 | 1.74 | 1 |
Dolph–Tschebyscheff (−25 dB) | 1 | 2 | 2 | 1 |
Weight Method | Beam Width Measured (°) | Beam Width Theoretical (°) |
---|---|---|
Uniform | 17° | 24° |
Binomial | 27° | 32° |
Dolph–Tschebyscheff (−15 dB) | 19° | 26° |
Dolph–Tschebyscheff (−20 dB) | 21° | 28° |
Dolph–Tschebyscheff (−25 dB) | 22.5° | 30° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinho, D.; Arruela, R.; Varum, T.; Matos, J.N. Software-Defined Radio Beamforming System for 5G/Radar Applications. Appl. Sci. 2020, 10, 7187. https://doi.org/10.3390/app10207187
Marinho D, Arruela R, Varum T, Matos JN. Software-Defined Radio Beamforming System for 5G/Radar Applications. Applied Sciences. 2020; 10(20):7187. https://doi.org/10.3390/app10207187
Chicago/Turabian StyleMarinho, Diogo, Raul Arruela, Tiago Varum, and João N. Matos. 2020. "Software-Defined Radio Beamforming System for 5G/Radar Applications" Applied Sciences 10, no. 20: 7187. https://doi.org/10.3390/app10207187
APA StyleMarinho, D., Arruela, R., Varum, T., & Matos, J. N. (2020). Software-Defined Radio Beamforming System for 5G/Radar Applications. Applied Sciences, 10(20), 7187. https://doi.org/10.3390/app10207187