Automatic Bridge Design Parameter Extraction for Scan-to-BIM
Abstract
:1. Introduction
2. System Development
2.1. Noise Reduction
2.2. 3D Transformation
2.2.1. Plane Prediction Using the m-Estimator Sample Consensus (MSAC)
2.2.2. Plane-Forming-Vector Extraction
2.2.3. 3D Rotation Matrix
2.3. Design Parameter Extraction
3. BIM Model-Based Validation
3.1. BIM Model-Based Validation Test Setup
3.2. BIM Model-Based Validation Result and Discussion
4. On-Site Field Validation
4.1. On-Site Field Validation Test Setup
4.2. On-Site Field Validation Result and Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- American Society of Civil Engineers. The Vision for Civil Engineering in 2025; American Society of Civil Engineers: Reston, VA, USA, 2007. [Google Scholar]
- Yoon, H.; Elanwar, H.; Choi, H.; Golparvar-Fard, M.; Spencer, B.F. Target-free approach for vision-based structural system identification using consumer-grade cameras. Struct. Control Health Monit. 2016, 23, 1405–1416. [Google Scholar] [CrossRef]
- Cha, Y.-J.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Comput. Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Narazaki, Y.; Hoskere, V.; Hoang, T.A.; Fujino, Y.; Sakurai, A.; Spencer, B.F., Jr. Vision-based automated bridge component recognition with high-level scene consistency. Comput. Civ. Infrastruct. Eng. 2020, 35, 465–482. [Google Scholar] [CrossRef]
- Liang, X. Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization. Comput. Civ. Infrastruct. Eng. 2018, 34, 415–430. [Google Scholar] [CrossRef]
- Kim, H.; Yoon, J.; Sim, S.-H. Automated bridge component recognition from point clouds using deep learning. Struct. Control. Health Monit. 2020, 27, e2591. [Google Scholar] [CrossRef]
- Alizadehsalehi, S.; Hadavi, A.; Huang, J.C. From BIM to extended reality in AEC industry. Autom. Constr. 2020, 116, 103254. [Google Scholar] [CrossRef]
- Eastman, C.M.; Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Moon, H.-S.; Won, J.-S.; Shin, J.-Y. The Final Report of the Research on Promoting BIM in the Public Construction Field; The Ministry of Land, Infrastructure and Transport: Seoul, Korea, 2018. [Google Scholar]
- Park, T.S.; Park, H.S. The current status and facilitation strategy of BIM for civil infrastructure projects. J. Korean Soc. Civ. Eng. 2018, 38, 133–140. [Google Scholar]
- Kim, S.-W. Overseas BIM cases and effective use method of BIM. Railw. J. 2018, 21, 129–135. [Google Scholar]
- Latiffi, A.A.; Brahim, J.; Mohd, S.; Fathi, M.S. Building Information Modeling (BIM): Exploring Level of Development (LOD) in Construction Projects. Appl. Mech. Mater. 2015, 773, 933–937. [Google Scholar] [CrossRef] [Green Version]
- Ilter, D.; Ergen, E. BIM for building refurbishment and maintenance: Current status and research directions. Struct. Surv. 2015, 33, 228–256. [Google Scholar] [CrossRef]
- Biancardo, S.A.; Viscione, N.; Cerbone, A.; Dessì, J.E. BIM-Based Design for Road Infrastructure: A Critical Focus on Modeling Guardrails and Retaining Walls. Infrastructures 2020, 5, 59. [Google Scholar] [CrossRef]
- Abbondati, F.; Biancardo, S.A.; Palazzo, S.; Capaldo, F.S.; Viscione, N. I-BIM for existing airport infrastructures. Transp. Res. Procedia 2020, 45, 596–603. [Google Scholar] [CrossRef]
- Bosché, F.; Ahmed, M.; Turkan, Y.; Haas, C.T.; Haas, R. The value of integrating Scan-to-BIM and Scan-vs-BIM techniques for construction monitoring using laser scanning and BIM: The case of cylindrical MEP components. Autom. Constr. 2015, 49, 201–213. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, J.; Kim, M.-K. An Application Oriented Scan-to-BIM Framework. Remote. Sens. 2019, 11, 365. [Google Scholar] [CrossRef] [Green Version]
- Biancardo, S.A.; Capano, A.; De Oliveira, S.G.; Tibaut, A. Integration of BIM and Procedural Modeling Tools for Road Design. Infrastructures 2020, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Macher, H.; Landes, T.; Grussenmeyer, P. From Point Clouds to Building Information Models: 3D Semi-Automatic Reconstruction of Indoors of Existing Buildings. Appl. Sci. 2017, 7, 1030. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, S.; Lee, D.-E. 3D Point Cloud and BIM-Based Reconstruction for Evaluation of Project by As-Planned and As-Built. Remote. Sens. 2020, 12, 1457. [Google Scholar] [CrossRef]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Kundu, A.; Li, Y.; Dellaert, F.; Li, F.; Rehg, J.M. Joint semantic segmentation and 3d reconstruction from monocular video. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 703–718. [Google Scholar]
- Engelmann, F.; Kontogianni, T.; Hermans, A.; Leibe, B. Exploring spatial context for 3D semantic segmentation of point clouds. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017; pp. 716–724. [Google Scholar]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. [Google Scholar]
- Bischke, B.; Helber, P.; Folz, J.; Borth, D.; Dengel, A. Multi-task learning for segmentation of building footprints with deep neural networks. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Tapei, Tawain, 22–25 September 2019; pp. 1480–1484. [Google Scholar]
- Wang, J.; Shan, J. Segmentation of LiDAR point clouds for building extraction. In Proceedings of the American Society for Photogrammetry and Remote Sensing Annual Conference, Baltimore, MD, USA, 9–13 March 2009; pp. 9–13. [Google Scholar]
- Altman, N.S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 1992, 46, 175–185. [Google Scholar]
- Torr, P.H.S.; Zisserman, A. MLESAC: A New Robust Estimator with Application to Estimating Image Geometry. Comput. Vis. Image Underst. 2000, 78, 138–156. [Google Scholar] [CrossRef] [Green Version]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Hoffman, K.; Kunze, R. Linear Algebra; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1971; pp. 122–125. [Google Scholar]
- Bar-Itzhack, I.Y. New Method for Extracting the Quaternion from a Rotation Matrix. J. Guid. Control. Dyn. 2000, 23, 1085–1087. [Google Scholar] [CrossRef]
Parameter | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Avg | ||||||||||
Reference (mm) | 2600 | 1750 | 350 | 20,000 | 10,200 | 8200 | 1000 | 800 | 300 | - |
w/o noise + data loss | 2600 | 1750 | 350.6 | 20,000 | 10,200 | 8200 | 1000 | 800.3 | 300.9 | - |
(error, %) | (0%) | (0%) | (0.17%) | (0%) | (0%) | (0%) | (0%) | (0.04%) | (0.3%) | (0.06%) |
w/5% noise + data loss | 2648.4 | 1781.9 | 364.7 | 20,018.2 | 10,219.6 | 8253.4 | 1012.3 | 823.6 | 313.7 | - |
(error, %) | (1.86%) | (1.82%) | (4.2%) | (0.09%) | (0.19%) | (0.65%) | (1.23%) | (2.95%) | (4.57%) | (1.95%) |
Parameter Error (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Span. No | Avg | ||||||||
1 | 0.96 | 0.57 | 0.04 | 0.19 | 0.14 | 0.11 | 0.44 | 2.65 | 0.64 |
2 | 0.50 | 0.51 | 0.15 | 0.17 | 0.16 | 0.11 | 0.90 | 1.49 | 0.50 |
3 | 0.83 | 1.66 | 0.04 | 0.01 | 0.18 | 0.11 | 2.04 | 1.90 | 0.85 |
4 | 1.05 | 1.44 | 0.13 | 0.36 | 0.25 | 0.80 | 0.33 | 1.86 | 0.78 |
5 | 0.95 | 1.92 | 0.05 | 0.34 | 0.20 | 0.53 | 1.02 | 0.92 | 0.74 |
6 | 1.07 | 1.44 | 0.01 | 0.44 | 0.22 | 2.00 | 4.22 | 1.42 | 1.35 |
7 | 0.44 | 0.42 | 0.06 | 0.35 | 0.33 | 0.75 | 2.48 | 0.46 | 0.66 |
8 | 0.85 | 0.05 | 0.07 | 0.16 | 0.22 | 0.52 | 1.47 | 1.42 | 0.60 |
9 | 1.61 | 0.92 | 0.01 | 0.25 | 0.36 | 0.11 | 0.66 | 3.41 | 0.92 |
10 | 0.38 | 1.52 | 0.02 | 0.33 | 0.32 | 0.66 | 0.99 | 2.87 | 0.89 |
11 | 0.09 | 0.32 | 0.003 | 0.69 | 0.42 | 0.69 | 1.22 | 2.74 | 0.77 |
12 | 1.65 | 0.75 | 0.16 | 0.34 | 0.39 | 0.56 | 0.33 | 4.76 | 1.12 |
13 | 1.46 | 0.80 | 0.07 | 0.22 | 0.32 | 0.83 | 0.99 | 2.27 | 0.87 |
14 | 1.60 | 0.88 | 0.01 | 0.09 | 0.32 | 0.34 | N/A | N/A | 0.54 |
Avg | 0.96 | 0.94 | 0.06 | 0.28 | 0.27 | 0.58 | 1.31 | 2.17 | - |
Total avg. error (%) | 0.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.H.; Park, J.J.; Yoon, H. Automatic Bridge Design Parameter Extraction for Scan-to-BIM. Appl. Sci. 2020, 10, 7346. https://doi.org/10.3390/app10207346
Lee JH, Park JJ, Yoon H. Automatic Bridge Design Parameter Extraction for Scan-to-BIM. Applied Sciences. 2020; 10(20):7346. https://doi.org/10.3390/app10207346
Chicago/Turabian StyleLee, Jae Hyuk, Jeong Jun Park, and Hyungchul Yoon. 2020. "Automatic Bridge Design Parameter Extraction for Scan-to-BIM" Applied Sciences 10, no. 20: 7346. https://doi.org/10.3390/app10207346
APA StyleLee, J. H., Park, J. J., & Yoon, H. (2020). Automatic Bridge Design Parameter Extraction for Scan-to-BIM. Applied Sciences, 10(20), 7346. https://doi.org/10.3390/app10207346