Estimation of the Energy Consumption of the Rice and Corn Drying Process in the Equatorial Zone
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Rice and Corn Production
1.2. Rice Processing Plant
1.3. Corn Processing Plants
2. Methods
Technological Evaluation of the Dryers
- (a)
- General information of the company and the producer: company name, address, coordinates, MAGAP category, monthly production, type of product, product origin, % impurity and technology used (National, International, empirical construction).
- (b)
- The drying chamber and technical operating parameters: Type of dryer and quantity, dryer capacity, time of use (week), chamber temperature (measure at 6 points), airflow (measure at 6 points), chamber dimension, building materials, energy source (LPG, electricity, biomass, diesel), electricity consumption kWh/month, consumption of LPG (lb) and dollars/month, kg of biomass per dried, monthly diesel consumption (gallons), thermal problems, and maintenance date.
- (c)
- Technical characteristics of the auxiliary equipment: Brand, year of manufacture, quantity, power, and flow. The additional teams are extractors, resistors, motor, generator, and burner.
- (d)
- Duct system, technical parameters, and power supply: Dimension of the heat duct, inlet temperature in the duct system from the heat source, outlet temperature/connection to the chamber, inlet airflow, thermal problems, maintenance, and scheme of the dryer. Combustion chamber dimension (if applicable for biomass furnace), internal operating temperature, and heat exchanger outlet temperature. LPG burner dimension, number of nozzles, distance from the burner to the exhaust fan, connection to LPG cylinders, or reservoirs for industrial use. [30,31]
- (e)
- Initial and final product temperature, humidity, and observations: Product drying time, % initial and final humidity of the product (3 samples taken from each for analysis, the sample measured at the site), initial and final water activity of the product (3 samples measured at the site). Observations; environmental conditions [32]
3. Results
3.1. Rice Processing Plant
3.1.1. Dryers Using Conventional Energies
3.1.2. Dryers Using Biomass
3.1.3. Energy Valuation
3.2. Corn Processing Plants
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Delgado, P.E. Diseño, Modelo Matemático y Construcción de un Secador Optimizado con Energías Limpias. Ph.D. Thesis, Universidade de Santiago de Compostela, Santiago, Spain, 2015. Available online: http://hdl.handle.net/10347/12299 (accessed on 14 February 2015).
- Fito-Maupoey, P. Introducción al Secado de Alimentos por Aire Caliente; Universidad Politécnica de Valencia: Valencia, Spain, 2001; pp. 21–34. [Google Scholar]
- Skovgaard, N. Drying technologies in food processing. Int. J. Food Microbiol. 2009, 129, 209. [Google Scholar] [CrossRef]
- FAO. Secado de Granos y Secadoras. Santiago de Chile. Available online: http://www.fao.org/3/x5028s/X5028S00.htm (accessed on 2 March 2020).
- Tsotsas, E.; Mujumdar, A.S. Modern drying technology vol. 1 computational tools at different scales. Dry. Technol. 2008, 26, 812–814. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Mobli, H.; Rafiee, S.; Madadlou, A. A review on exergy analysis of drying processes and systems. Renew. Sustain. Energy Rev. 2013, 22, 1–22. [Google Scholar] [CrossRef]
- Van’t Land, C.M. Drying in the Process Industry, 1st ed.; Wiley, InterScience (Online Service); John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; ISBN 978-1-118-10581-8. [Google Scholar]
- Boroze, T.; Desmorieux, H.; Méot, J.M.; Marouze, C.; Azouma, Y.; Napo, K. Inventory and comparative characteristics of dryers used in the sub-Saharan zone: Criteria influencing dryer choice. Renew. Sustain. Energy Rev. 2014, 40, 1240–1259. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Censos (INEC). Estadistica Ecuador. 2019. Available online: https://www.ecuadorencifras.gob.ec/estadisticas/ (accessed on 13 March 2020).
- Morán-Tejeda, E.; Bazo, J.; López-Moreno, J.I.; Aguilar, E.; Azorín-Molina, C.; Sanchez-Lorenzo, A.; Martínez, R.; Nieto, J.J.; Mejía, R.; Martín-Hernández, N.; et al. Climate trends and variability in Ecuador (1966–2011). Int. J. Clim. 2016, 36, 3839–3855. [Google Scholar] [CrossRef] [Green Version]
- Peralta, J. Modelamiento Computacional del Recurso Solar y Eólico para Aplicación de Sistemas de Energía Renovable. Ph.D. Thesis, Universidade de Santiago Compostela, Santiago, Spain, 2015. [Google Scholar]
- Pourrut, P. Los Climas del Ecuador: Fundamentos Explicativos. Quito, 1983. Available online: http://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers11-10/21848.pdf (accessed on 13 March 2020).
- MAGAP. La Política Agropecuaria Ecuatoriana: Hacia el Desarrollo Territorial Rural Sostenible: 2015–2025 I Parte. 2015. Available online: https://www.agricultura.gob.ec/la-politica-agropecuaria-ecuatoriana-revaloriza-participacion-del-sector-productivo/ (accessed on 13 March 2020).
- FAO. El Estado de la Biodiversidad para la Alimentación y la Agricultura en el Ecuador; 2016; p. 475. Available online: http://www.fao.org/3/CA3493ES/ca3493es.pdf. (accessed on 10 April 2020).
- Vannella, L.; Lahner, E.; Osborn, J.; Cesare, B.; Massimo, M.; Fave, G.D.; Annibale, B. Risk factors for progression to gastric neoplastic lesions in patients with atrophic gastritis. Aliment. Pharmacol. Ther. 2010, 31, 1042–1050. [Google Scholar] [CrossRef] [PubMed]
- Gobierno del Ecuador. Reglamento De Regulacion De Precios De Derivados De Petróleo. 2015. Available online: https://www.gob.ec/index.php/regulaciones/decreto-ejecutivo-338-reglamento-regulacion-precios-derivados-petroleo (accessed on 25 October 2020).
- Agencia de Regulación y Control Hidrocarburífero. Precios-Combustibles. Semanal, 2020. Available online: https://www.controlhidrocarburos.gob.ec/precios-combustibles/ (accessed on 20 April 2020).
- Electricidad, A.A.d.R.y.C. Pliego Tarifario para las Empresas Eléctricas de Distribución Codificado; Resolución Nro. ARCONEL-002/19; Electricidad: Quito, Ecuador, 2019; Volume 18, Available online: https://www.regulacionelectrica.gob.ec/wp-content/uploads/downloads/2019/02/Pliego-Tarifario-SPEE-2019.pdf (accessed on 25 October 2020).
- Arconel, A.d.C.d.E. Resolución Nro. ARCONEL-023-19; Arconel: Quito, Ecuador, 2019; pp. 1–7. [Google Scholar]
- Arconel, A.C.E. 2020 Informe de Actividades y Gestión. 2020. Available online: https://www.regulacionelectrica.gob.ec/wp-content/uploads/downloads/2020/04/Informe-de-actividades-y-de-gestión-2019-VF.pdf (accessed on 20 April 2020).
- Schaffitzel, F.; Jakob, M.; Soria, R.; Vogt-schilb, A.; Ward, H. Pueden las Transferencias del Gobierno Hacer que la Reforma de los Subsidios Energéticos sea Socialmente Aceptable: Un Estudio de caso Sobre Ecuador; Banco Interamericano de Desarrollo; División de Cambio Climatico, 2019; Available online: https://publications.iadb.org/publications/spanish/document/Pueden_las_transferencias_del_gobierno_hacer_que_la_reforma_de_los_subsidios_energ%C3%A9ticos_sea_socialmente_aceptable_Un_estudio_de_caso_sobre_Ecuador.pdf (accessed on 20 April 2020).
- Dominguez, G.N.C. Evaluación de los Centros de Secado del Sector Maicero: Propuesta de Administración Cooperativista y su Incidencia en el Nivel de Vida de los Pequeños y Medianos Productores de Maíz de los Cantones; Universidad Politécnica Salesiana: Cuenca, Ecuador, 2013; Available online: https://dspace.ups.edu.ec/handle/123456789/4830 (accessed on 10 February 2020).
- Emérita, D.P.; Mayra, P.; Gonzalez, O.; Quilambaqui, M.A. Valoración de la Tecnología de Secado Para los Productos de Arroz, Maíz y Cacao; Memorias Del Congreso REDU VI; 2018; p. 148. Available online: http://www.inae.gob.ec/wp-content/uploads/2019/03/eBook_Memorias-del-VI-Congreso-REDU-2018-4.pdf (accessed on 10 May 2019).
- Agropecuaria, C.G.de.I.N. Geoportal del Agro Ecuatoriano. Available online: http://geoportal.agricultura.gob.ec/ (accessed on 8 January 2020).
- Bermeo, A. Plan De Mejoramiento De Las Operaciones Poscosecha Y Sistema De Secado De Arroz En El Cantón Ventanas En La Provincia De Los Ríos; Escuela Politécnica Nacional, 2010; Available online: https://bibdigital.epn.edu.ec/handle/15000/2111?locale=de (accessed on 3 January 2020).
- Edición, S.; Lenín, M.; Garcés, V.; Cordero, A.; Chiriboga, W.M.; Sarauz, S.S. Catálogo de Objetos Temáticos del Ministerio de Agricultura y Ganadería Volumen II. Available online: http://geoportal.agricultura.gob.ec/pdf/Catalogo_Volumen_II.pdf (accessed on 3 January 2020).
- Chauhan, P.S.; Kumar, A.; Gupta, B. A review on thermal models for greenhouse dryers. Renew. Sustain. Energy Rev. 2017, 75, 548–558. [Google Scholar] [CrossRef]
- Sakkampang, C.; Wongwuttanasatian, T. Study of ratio of energy consumption and gained energy during briquetting process for glycerin-biomass briquette fuel. Fuel 2014, 115, 186–189. [Google Scholar] [CrossRef]
- Onwude, D.I.; Hashim, N.; Chen, G. Recent advances of novel thermal combined hot air drying of agricultural crops. Trends Food Sci. Technol. 2016, 57, 132–145. [Google Scholar] [CrossRef] [Green Version]
- Sivakumar, R.; Saravanan, R.; Perumal, A.E.; Iniyan, S. Fluidized bed drying of some agro products—A review. Renew. Sustain. Energy Rev. 2016, 61, 280–301. [Google Scholar] [CrossRef]
- Sánchez, J. Diseño y parametrización de inductores con núcleo de hierro. Sci. Tech. 2009, 41, 19–24. [Google Scholar]
- Ndukwu, M.; Simo-Tagne, M.; Abam, F.; Onwuka, O.; Prince, S.; Bennamoun, L. Exergetic sustainability and economic analysis of hybrid solar-biomass dryer integrated with copper tubing as heat exchanger. Heliyon 2020, 6, e03401. [Google Scholar] [CrossRef] [PubMed]
- Yogendrasasidhar, D.; Pydisetty, Y. Experimental studies and thin layer modeling of pearl millet using continuous multistage fluidized bed dryer staged externally. Eng. Sci. Technol. Int. J. 2019, 22, 428–438. [Google Scholar] [CrossRef]
- Delgado-Plaza, E.; Peralta-Jaramillo, J.; Quilambaqui, M.; Gonzalez, O.; Reinoso-Tigre, J.; Arevalo, A.; Arancibia, M.; Paucar, M.; Velázquez-Martí, B. Thermal evaluation of a hybrid dryer with solar and geothermal energy for agroindustry application. Appl. Sci. 2019, 9, 4079. [Google Scholar] [CrossRef] [Green Version]
- FAO. Consumo Especifico de Energia. Available online: http://www.fao.org/3/x5028s/X5028S03.htm (accessed on 12 June 2020).
- Energía. Gases Licuados de Petróleo. Available online: https://energia.gob.es/glp/Paginas/Index.aspx (accessed on 12 June 2020).
- Ramon, S.; Cardenas, G.J. Poder Calorifico de la Cascarilla de arroz. Mundo Fesc 2018, 8, 72–76. Available online: https://www.researchgate.net/publication/330524350_Poder_calorifico_de_la_cascarilla_de_arroz (accessed on 12 June 2020).
- Navarro, D.P.; González, R.J.; Nuñez, R.D. Diseño de un horno para calentar aire implementando la cascarilla del arroz como combustible. Revisa Avances 2016, 18, 201–2012. [Google Scholar]
- Gaibor-Chávez, J.; Pérez-Pacheco, S.; Velázquez-Martí, B.; Niño-Ruiz, Z.; Domínguez-Narváez, V. Dendrometric characterization of corn cane residues and drying models in natural conditions in Bolivar Province (Ecuador). Renew. Energy 2016, 86, 745–750. [Google Scholar] [CrossRef]
- Lingayat, A.B.; Chandramohan, V.; Raju, V.; Meda, V. A review on indirect type solar dryers for agricultural crops—Dryer setup, its performance, energy storage and important highlights. Appl. Energy 2020, 258, 114005. [Google Scholar] [CrossRef]
- Velásquez, B. Aprovechamiento de la Biomasa para uso Energético, 1st ed.; Politécnica de Valencia: Valencia, Spain, 2017; pp. 37–83. [Google Scholar]
- Mujumdar, A.S. Handbook of Industrial Drying, 4th ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 87–110. [Google Scholar]
- Sarker, S.H.; Ibrahim, M.N.; Aziz, N.A.; Punan, M.S. Energy and exergy analysis of industrial fluidized bed drying of paddy. Energy 2015, 84, 131–138. [Google Scholar] [CrossRef]
- Ahiduzzaman, M.; Islam, A.K.M.S. Energy utilization and environmental aspects of rice processing industries in Bangladesh. Energies 2009, 2, 134–149. [Google Scholar] [CrossRef]
- Brunetti, L.; Giametta, F.; Catalano, P.; Villani, F.; Fioralba, J.; Fucci, F.; La Fianza, G. Energy consumption and analysis of industrial drying plants for fresh pasta process. J. Agric. Eng. 2015, 46, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Dincer, I. Exergy as a potential tool for sustainable drying systems. Sustain. Cities Soc. 2011, 1, 91–96. [Google Scholar] [CrossRef]
- González, Z.L.; López, S.B.; Reyna, C.Y. Use of the biomass for the agriculture industrial drying: Study of case. Rev. Ciencias Técnicas Agropecuar. 2005, 14–21. [Google Scholar]
- Llanes Cedeño, E.; López, B.E. Current energy-environmental state in the production of rice in the Granma province. Rev. Ciencias Técnicas Agropecuar 2006, 15–19. [Google Scholar]
- Kwofie, E.; Ngadi, M.; Sotocinal, S. Thermodynamic evaluation of a rice husk fired integrated steam and hot air generation unit for rice parboiling. Energy 2017, 128, 39–49. [Google Scholar] [CrossRef]
- Özahi, E.; Demir, H. Drying performance analysis of a batch type fluidized bed drying process for corn and unshelled pistachio nut regarding to energetic and exergetic efficiencies. Measurement 2015, 60, 85–96. [Google Scholar] [CrossRef]
Dryer Evaluation | ||||||
---|---|---|---|---|---|---|
Parameter | First Category (4 Dryers) | Dryers | Second Category (31 Dryers) | Dryers | Third Category (15 Dryers) | Dryers |
Dryer type | Elevator | 4 | Rectangular chamber | 24 | Rectangular chamber | 15 |
Rotary dryer for aged rice | 6 | |||||
Electric dryer for aged rice | 1 | |||||
Dryer capacity | 13,636 kg | 1 | Chamber (LPG use): 2730–5452 kg | 22 | 724–908 kg | 10 |
22,727 kg | 1 | Chamber (biomass use): 5454–10 909 kg | 2 | 908–1818 kg | 5 | |
40,909 kg | 1 | Rotary: 450 kg | 6 | |||
54,545 kg | 1 | Electric: 1000 kg | 1 | |||
Drying time | 12 h | 1 | 12–16 h | 24 | 12–15 h | 10 |
12 a 14 h | 1 | 8 h (aged rice) | 7 | 14–24 h | 5 | |
Chamber temperature | 45–55 °C | Chamber: 45–70 °C | 35–55 °C | |||
Rotary: 100 °C | ||||||
Electric: 100 °C | ||||||
Flame temperature | Biomass use 300 °C | LPG industrial: 280–600 °C | Industrial LPG 250–350 °C | |||
Biomass use: 250–380 °C | Domestic LPG 200–270 °C | |||||
Inlet temperature at the extractor | 130–180 °C | 80–170 °C | ||||
Chamber dimension | 24 m2 | 1 | 24–32 m2 | 22 | 9–12 m2 | 10 |
84 m2 | 1 | 48 m2 | 2 | 18–24 m2 | 5 | |
Energy source | Biomass | Industrial LPG | 28 | Industrial LPG | 1 | |
Diesel | Biomass | 2 | Domestic LPG | 14 | ||
Electricity | Electricity | 31 | Electricity | 12 | ||
Diesel (generator) | 1 | Diesel (generator) | 3 |
Parameters | #Dryers | |
---|---|---|
Dryers Types | Circular chamber | 10 |
Rectangular chamber | 4 | |
Drying capacity | 13,670–22,730 kg | 10 |
13,670 kg | 4 | |
Drying time | 6 h | |
Chamber temperature | 44–80 °C | |
Hot air temperature | Flame temperature 600 °C | |
Air duct temperature of 160–180 °C | ||
Chamber dimensions | 23–45 m3 | 10 |
22 m3 | 4 | |
Air duct dimensions | 0.41–0.48 m2 | |
Wind speed | Extractor; 10–13 m/s | |
Chamber; 3–0.6 m/s |
Canton | Number of Dryers Evaluated | Category |
---|---|---|
Daule | 13 | (1) First, (5) Second, (7) Third |
Salitre | 8 | (3) Second, (5) Third |
Santa Lucia | 6 | (1) First, (5) Second |
Parameter | First Category 2 Processes | Quantity | Second Category 13 Processes | Quantity | Third Category 12 Processes | Quantity |
---|---|---|---|---|---|---|
Electricity consumption of the plant **/month | 1700–3500 kW/month | 4 | 1000–2000 kWh/month | 8 | ||
3750–6000 kW/month | 9 | 2000–3500 kWh/month | 4 | |||
$900–$1500 | $200–$360 | 4 | $40–$80 | 8 | ||
$400–$700 | 9 | $80–$150 | 4 | |||
Gas consumption/dried | (kg) a tank without a consumption meter | 11 | 45–90 kg Domestic LPG | 11 | ||
100–150 kg Industrial LPG | 1 | |||||
$36–$100 | $9–$18 Domestic LPG | 11 | ||||
$21–$30 Industrial LPG | 1 | |||||
Biomass consumption*(rice husk)/dried | 378.8 kg/h–631.3 kg/h | 1 | 97–227 kg/h | 2 | ||
1583.3 kg/h–2375 kg/h | 1 | |||||
Ash | 38 kg/h–56.8 kg/h | 1 | 9.7–24 kg/h | |||
110 kg/h–166.3 kg/h | 1 | |||||
Consumption * Diesel fuel/dried | biomass dyers | Generator 20–38 gal | 3 | |||
2–5 gal. | 3–6 gal diesel | 2 | ||||
Generator | ||||||
25–30 gal | 1 | |||||
$3–$7.5 | Biomass dryers $4.5–$9 | Generator $21–$40 | 3 | |||
Generator $26–$31 |
Dryer | Capacity (Quintal) | Drying Hours | Electricity Consumption per Month (Dollars) | LPG per Month (Dollars) | Diesel per Month (Dollars) | Rice Husk kg/h | Ash (kg) kg/h | Production Indicator (Dollars/Quintal) |
---|---|---|---|---|---|---|---|---|
A1 | 600 | 12 | 450 | ----- | 60 | 568 | 39.8 | 0.59 |
A2 | 2400 | 12 | 750 | ----- | 100 | 1818.2 | 127 | 1.4 |
B1 | 100 | 14 | 80 | 200 | --- | --- | --- | 0.18 |
B2 | 240 | 14 | 339 | ---- | 99 | 155.4 | 0.27 | |
B3 | 500 | 12 | ----- | 1500 | 250 | --- | --- | 0.14 |
C1 | 20 | 16 | 20 | 192 | ----- | ----- | --- | 0.05 |
C2 | 20 | 30 | ---- | 144 | 51 | ----- | --- | 0.05 |
Dryer | Capacity (Quintal) | W0 (kg) | t (h) | Xwb1 (%) | Xwb2(%) | CL kcal/kg | Mfuel kg/h | LCV kcal/kg | Performance% |
---|---|---|---|---|---|---|---|---|---|
Biomass | 240 | 10,909 | 14 | 23 | 11 | 540 | 155.4 | 3577 | 10 |
GLP | 500 | 22,727.3 | 12 | 21 | 11 | 540 | 32.2 | 11,082 | 32.2 |
Biomass | 600 | 27,273.7 | 12 | 21 | 11 | 540 | 567 | 3577 | 6.8 |
Parameters | Results |
---|---|
Energy source | Industrial LPG Electricity |
The electric consumption of the plant/monthly | $450–$800 |
Consumption of gas of the plant/monthly | $3000–$4000 |
Dryer | Capacity (Quintal) | Drying Time (Hours) | Drying per Month | Electricity Consumption per Month (Dollars) | Industrial LPG per Month (Dollars) | Production Indicator Dollars/Quintal |
---|---|---|---|---|---|---|
A1 | 400 | 6 | 3 | 100 | 760 | 0.47 |
A2 | 400 | 6 | 286.5 | 1200 | 0.27 |
Dryer | Capacity (Quintals) | W0 (kg) | t (h) | Xwb1 (%) | Xwb2 (%) | CL kcal/kg | Mfuel kg/h | LCV kcal/kg | Performance % |
---|---|---|---|---|---|---|---|---|---|
A1 | 400 | 18,181.8 | 6 | 19.4 | 13 | 600 | 28 | 11,082 | 43.1 |
A2 | 400 | 18,181.8 | 6 | 20 | 13 | 600 | 53 | 11,082 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Plaza, E.; Quilambaqui, M.; Peralta-Jaramillo, J.; Apolo, H.; Velázquez-Martí, B. Estimation of the Energy Consumption of the Rice and Corn Drying Process in the Equatorial Zone. Appl. Sci. 2020, 10, 7497. https://doi.org/10.3390/app10217497
Delgado-Plaza E, Quilambaqui M, Peralta-Jaramillo J, Apolo H, Velázquez-Martí B. Estimation of the Energy Consumption of the Rice and Corn Drying Process in the Equatorial Zone. Applied Sciences. 2020; 10(21):7497. https://doi.org/10.3390/app10217497
Chicago/Turabian StyleDelgado-Plaza, Emérita, Miguel Quilambaqui, Juan Peralta-Jaramillo, Hector Apolo, and Borja Velázquez-Martí. 2020. "Estimation of the Energy Consumption of the Rice and Corn Drying Process in the Equatorial Zone" Applied Sciences 10, no. 21: 7497. https://doi.org/10.3390/app10217497
APA StyleDelgado-Plaza, E., Quilambaqui, M., Peralta-Jaramillo, J., Apolo, H., & Velázquez-Martí, B. (2020). Estimation of the Energy Consumption of the Rice and Corn Drying Process in the Equatorial Zone. Applied Sciences, 10(21), 7497. https://doi.org/10.3390/app10217497