Alicyclobacillus acidoterrestris Strain Variability in the Inactivation Kinetics of Spores in Orange Juice by Temperature-Assisted High Hydrostatic Pressure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Spore Suspension
2.2. Enumeration of A. acidoterrestris Spores
2.3. Orange Juice Samples
2.4. High Pressure Treatment of Orange Juice Samples
2.5. Determination of Inactivation Kinetics
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cenry, G.; Hennlich, W.; Porolla, K. Spoilage of fruit juices by bacilli: Isolation and characterization of the spoiling microorganisms. Z. Lebensm.-Unters. Forsch. 1984, 179, 224–227. [Google Scholar]
- Silva FVM, Gibbs P Alicyclobacillus acidoterrestris spores in fruit products and design of pasteurization processes. Trends Food Sci. Technol. 2001, 12, 68–74. [CrossRef]
- Hartyáni, P.; Dalmadi, I.; Knorr, D. Electronic nose investigation of Alicyclobacillus acidoterrestris inoculated apple and orange juice treated by high hydrostatic pressure. Food Control. 2013, 32, 262–269. [Google Scholar] [CrossRef]
- Smit, Y.; Camron, M.; Venter, P.; Witthuhn, R.C. Alicyclobacillus spoilage and isolation—A review. Food Microbiol. 2011, 28, 331–349. [Google Scholar] [CrossRef]
- Uchida, R.; Silva, F.V.M. Alicyclobacillus acidoterrestris spore inactivation by high pressure combined with mild heat: Modeling the effects of temperature and soluble solids. Food Control 2017, 73, 426–432. [Google Scholar] [CrossRef]
- Yamazaki, K.; Teduka, H.; Inoue, N.; Shinano, H. Specific primers for detection of Alicyclobacillus acidoterrestris by RT-PCR. Lett. Appl. Microbiol. 1996, 23, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.C.; Guo, C.F.; Yuan, Y.H.; Luo, X.X.; Yue, T.L. Detection of medicinal off-flavor in apple juice with artificial sensing system and comparison with test panel evaluation and GC-MS. Food Control 2015, 51, 270–277. [Google Scholar] [CrossRef]
- Molva, C.; Baysal, A.H. Evaluation of bioactivity of pomegranate fruit extract against Alicyclobacillus acidoterrestris DSM 3922 vegetative cells and spores in apple juice. Food Sci. Technol. 2015, 62, 989–995. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, A.; Cibelli, F.; Corbo, M.R.; Sinigaglia, M. Effects of high-pressure homogenization on the survival of Alicyclobacillus acidoterrestris in a laboratory medium. Lett. Appl. Microbiol. 2007, 45, 382–386. [Google Scholar] [CrossRef]
- Silva, F.V.M. High pressure processing pretreatment enhanced the thermosonication inactivation of Alicyclobacillus acidoterrestris spores in orange juice. Food Control 2016, 62, 365–372. [Google Scholar]
- Kakagianni, M.; Kalantzi, K.; Beletsiotis, E.; Ghikas, D.; Lianou, A.; Koutsoumanis, K. Development and validation of predictive models for the effect of storage temperature and pH on the growth boundaries and kinetics of Alicyclobacillus acidoterrestris ATCC49025 in fruit drinks. Food Microbiol. 2018, 74, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Gouws, P.A.; Gie, L.; Pretorius, A.; Dhansay, N. Isolation and identification of Alicyclobacillus acidocaldarius by 16S rDNA from mango juice and concentrate. Int. J. Food Sci. Technol. 2005, 40, 789–792. [Google Scholar] [CrossRef]
- Casas, J.; Valverde, M.T.; Marín-Iniesta, F.; Calvo, L. Inactivation of Alicyclobacillus acidoterrestris spores by high pressure CO2 in apple cream. Int. J. Food Microbiol. 2012, 156, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Steyn, C.E.; Cameron, M.; Witthuhn, R.C. Occurrence of Alicyclobacillus in the fruit processing environment—A review. Int. J. Food Microbiol. 2012, 147, 1–11. [Google Scholar] [CrossRef]
- Silva, F.V.M.; Gibbs, P. Target selection in designing pasteurization processes for shelf-stable high-acid fruit products. Crit. Rev. Food Sci. Nutr. 2004, 44, 353–360. [Google Scholar] [CrossRef]
- Silva, F.V.M.; Gibbs, P. Principles of thermal processing: Pasteurization. In Engineering Aspects of Thermal Food Processing; Simpson, R., Ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 13–48. [Google Scholar]
- Eiroa, M.N.U.; Junqueira, C.A.; Schmidt, F.L. Alicyclobacillus in orange juice: Occurrence and heat resistance of spores. J. Food Prot. 1999, 62, 883–886. [Google Scholar] [CrossRef]
- Silva, F.V.M.; Tan, E.K.; Farid, M. Bacterial spore inactivation at 45–65 °C using high pressure processing: Study of Alicyclobacillus acidoterrestris in orange juice. Food Microbiol. 2012, 32, 206–211. [Google Scholar] [CrossRef]
- Lee, S.Y.; Dougherty, R.H.; Kang, D.H. Inhibitory effects of high pressure and heat on Alicyclobacillus acidoterrestris spores in apple juice. Appl. Environ. Microbiol. 2002, 68, 4158–4161. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.H.; Ryang, J.H.; Lee, B.S.; Kim, C.T.; Rhee, M.S. Continuous ohmic heating of commercially processed apple juice using five sequential electric fields results in rapid inactivation of Alicyclobacillus acidoterrestris spores. Int. J. Food Microbiol. 2017, 246, 80–84. [Google Scholar] [CrossRef]
- Wang, J.; Hu, X.; Wang, Z. Kinetic models for the inactivation of Alicyclobacillus acidiphilus DSM14558 and Alicyclobacillus acidoterrestris DSM 3922 in apple juice by ultrasound. Int. J. Food Microbiol. 2010, 139, 177–181. [Google Scholar] [CrossRef]
- Ferrario, M.I.; Guerrero, S.N. Inactivation of Alicyclobacillus acidoterrestris ATCC 49025 spores in apple juice by pulsed light. Influence of initial contamination and required reduction levels. Rev. Argent. Microbiol. 2018, 50, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.A.; Martins, A.P.; Santos, M.D.; Fidalgo, L.G.; Delgadillo, I. Growth inhibition and inactivation of Alicyclobacillus acidoterrestris endospores in apple juice by hyperbaric storage at ambient temperature. Innov. Food Sci. Emerg. Technol. 2019, 52, 232–236. [Google Scholar] [CrossRef]
- Keyser, M.; Muller, I.A.; Cilliers, F.P.; Nel, W.; Gouws, P.A. Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innov. Food Sci. Emerg. Technol. 2008, 9, 348–354. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Campaniello, D.; Speranza, B.; Sinigaglia, M.; Corbo, M.R. Control of Alicyclobacillus acidoterrestris in apple juice by citrus extracts and a mild heat treatment. Food Control 2013, 31, 553–559. [Google Scholar] [CrossRef]
- Porębska, I.; Sokolowska, B.; Skapska, S.; Rzoska, S. Treatment with high hydrostatic pressure and supercritical carbon dioxide to control Alicyclobacillus acidoterrestris spores in apple juice. Food Control 2017, 73, 24–30. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Sinigaglia, M.; Corbo, M.R. Alicyclobacillus acidoterrestris: New methods for inhibiting spore germination. Int. J. Food Microbiol. 2008, 125, 103–110. [Google Scholar] [CrossRef]
- Vercammen, A.; Vivijs, B.; Lurquin, I.; Michiels, C.W. Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce. Int. J. Food Microbiol. 2012, 152, 162–167. [Google Scholar] [CrossRef]
- Lee, S.Y.; Chung, H.J.; Kang, D.Y. Combined treatment of high pressure and heat on killing spores of Alicyclobacillus acidoterrestris in apple juice concentrate. J. Food Prot. 2006, 69, 1056–1060. [Google Scholar] [CrossRef]
- Evelyn; Silva, F.V.M. High pressure processing of milk: Modeling the inactivation of psychotrophic Bacillus cereus spores at 38–70 °C. J. Food Eng. 2015, 165, 141–148. [Google Scholar] [CrossRef]
- Evelyn; Silva, F.V.M. Inactivation of Byssochlamys nivea ascospores in strawberry puree by high pressure, power ultrasound and thermal processing. Int. J. Food Microbiol. 2015, 14, 129–136. [Google Scholar] [CrossRef]
- Evelyn; Silva, F.V.M. High pressure thermal processing for the inactivation of Clostridium perfringens spores in beef slurry. Innov. Food Sci. Emerg. Technol. 2016, 33, 26–31. [Google Scholar] [CrossRef]
- Evelyn; Silva, F.V.M. Modelling the inactivation of psychotrophic Bacillus cereus spores in beef slurry by 600 MPa HPP combined with 38–70 °C: Comparing with thermal processing and estimating the energy requirements. Food Bioprod. Process. 2016, 99, 179–187. [Google Scholar] [CrossRef]
- Alpas, H.; Alma, L.; Bozoglu, F. Inactivation of Alicyclobacillus acidoterrestris vegetative cells in model system, apple, orange and tomato juices by high hydrostatic pressure. World J. Microbiol. Biotechnol. 2003, 19, 619–623. [Google Scholar] [CrossRef]
- Buzrul, S.; Alpas, H.; Bozoglu, F. Use of Weibull frequency distribution model to describe the inactivation of Alicyclobacillus acidoterrestris by high pressure at different temperatures. Food Res. Int. 2005, 38, 151–157. [Google Scholar] [CrossRef]
- Mafart, P.; Couvert, O.; Gaillard, S.; Leguerinel, I. On calculating sterility in thermal preservation methods: Application of the Weibull frequency distribution model. Int. J. Food Microbiol. 2002, 72, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Geeraerd, A.H.; Valdramidis, V.P.; Van Impre, J.F. GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int. J. Food Microbiol. 2004, 102, 95–105. [Google Scholar] [CrossRef]
- Van Boekel, M.A.J.S. On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. Int. J. Food Microbiol. 2002, 74, 139–159. [Google Scholar] [CrossRef]
- Peleg, M.; Cole, M.B. Reinterpretation of microbial survival curves. Crit. Rev. Food Sci. 2010, 38, 353–380. [Google Scholar] [CrossRef]
- Wuytack, E.; Boven, S.; Michiels, C.W. Comparative study of pressure-induced germination of Bacillus subtilis spores at low and high pressures. Appl. Environ. Microbiol. 1998, 64, 3220–3224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solokowska, B.; Skapska, S.; Fonberg-Broczek, M.; Niezgoda, J.; Porebska, I.; Dekowska, A.; Rzoska, S.J. Germination and inactivation of Alicyclobacillus acidoterrestris spores induced by moderate hydrostatic pressure. Pol. J. Microbiol. 2015, 64, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Goto, K.; Mochida, K.; Asahara, M.; Suzuki, M.; Kasai, H.; Yokota, A. Alicyclobacillus pomorum sp. Nov., a novel thermoacidophilic, endospore-forming bacterium that does not possess ω alicyclic fatty acids, and emended description of the genus Alicyclobacillus. Int. J. Syst. Evol. Microbiol. 2003, 53, 1537–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.S.; Kang, D.H. Alicyclobacillus spp. in the fruit juice industry: Histrory, characteristics, and current isolation/detection procedures. Crit. Rev. Microbiol. 2004, 30, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Baysal, A.H.; Molva, C.; Unluturk, S. UV-C light inactivation and modeling kinetics of Alicyclobacillus acidoterrestris spores in white grape and apple juices. Int. J. Food Microbiol. 2013, 166, 494–498. [Google Scholar] [CrossRef] [Green Version]
- Tassou, C.C.; Panagou, E.Z.; Samaras, F.J.; Galiatsatou, P.; Mallidis, C.G. Temperature-assisted high hydrostatic pressure inactivation of Staphylococcus aureus in a ham model system: Evaluation in selective and nonselective medium. J. Appl. Microbiol. 2008, 104, 1764–1773. [Google Scholar] [CrossRef]
- Cunha, L.M.; Oliveira, F.A.R.; Oliveira, J.C. Optimal experimental design for estimating the kinetic parameters of processes described by the Weibull probability distribution function. J. Food Eng. 1998, 37, 175–191. [Google Scholar] [CrossRef]
- Albert, I.; Mafart, P. A modified Weibull model for bacterial inactivation. Int. J. Food Microbiol. 2005, 100, 197–211. [Google Scholar] [CrossRef]
Strain A | T 1 (°C) | δ2 (min) | p3 | RMSE 4 | R2 5 |
500 MPa | 45 | 0.039 | 0.176 | 0.517 | 0.769 |
60 | 0.013 | 0.218 | 0.496 | 0.940 | |
70 | 0.020 | 0.258 | 0.249 | 0.985 | |
600 MPa | 45 | 0.009 | 0.153 | 0.251 | 0.944 |
60 | 0.007 | 0.222 | 0.185 | 0.991 | |
70 | 0.004 | 0.286 | 0.407 | 0.962 | |
Strain B | T (°C) | δ (min) | p | RMSE | R2 |
500 MPa | 45 | 0.492 | 0.225 | 0.320 | 0.844 |
60 | 0.104 | 0.293 | 0.323 | 0.961 | |
70 | 0.027 | 0.264 | 0.200 | 0.990 | |
600 MPa | 45 | 2.493 | 0.318 | 0.172 | 0.407 |
60 | 0.040 | 0.248 | 0.544 | 0.894 | |
70 | 0.007 | 0.235 | 0.538 | 0.981 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sourri, P.; Argyri, A.A.; Panagou, E.Z.; Nychas, G.-J.E.; Tassou, C.C. Alicyclobacillus acidoterrestris Strain Variability in the Inactivation Kinetics of Spores in Orange Juice by Temperature-Assisted High Hydrostatic Pressure. Appl. Sci. 2020, 10, 7542. https://doi.org/10.3390/app10217542
Sourri P, Argyri AA, Panagou EZ, Nychas G-JE, Tassou CC. Alicyclobacillus acidoterrestris Strain Variability in the Inactivation Kinetics of Spores in Orange Juice by Temperature-Assisted High Hydrostatic Pressure. Applied Sciences. 2020; 10(21):7542. https://doi.org/10.3390/app10217542
Chicago/Turabian StyleSourri, Patra, Anthoula A. Argyri, Efstathios Z. Panagou, George-John E. Nychas, and Chrysoula C. Tassou. 2020. "Alicyclobacillus acidoterrestris Strain Variability in the Inactivation Kinetics of Spores in Orange Juice by Temperature-Assisted High Hydrostatic Pressure" Applied Sciences 10, no. 21: 7542. https://doi.org/10.3390/app10217542
APA StyleSourri, P., Argyri, A. A., Panagou, E. Z., Nychas, G.-J. E., & Tassou, C. C. (2020). Alicyclobacillus acidoterrestris Strain Variability in the Inactivation Kinetics of Spores in Orange Juice by Temperature-Assisted High Hydrostatic Pressure. Applied Sciences, 10(21), 7542. https://doi.org/10.3390/app10217542