Sleep State Classification Using Power Spectral Density and Residual Neural Network with Multichannel EEG Signals
Abstract
:1. Introduction
- An automatic sleep stage detection framework is developed for both genders due to inherent biologoical differences between the two that might affect the electrical activities in their brains and consequently the recorded EEG data.
- The proposed framework considers multi-channel EEG data as input that is recorded at different brain lobes to accurately detect different sleep stages.
- A ResNet architecture, with eight identity shortcut connections, is used with the PSD of time domain EEG signals as input, to identify different sleep stages. The performance of the proposed framework is compared with eight different approaches and is found to be better.
2. Related Work
3. Methodology
3.1. Dataset Description
3.2. Domain Knowledge Extraction by Power Spectral Density
3.3. Residual Neural Network
3.4. Data Preparation for Classification and Parameters for Performance Measurement
4. Results and Discussion
4.1. Performance Analysis of Residual Neural Network
4.2. Comparisons and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Morin, C.M.; Espie, C.A. The Oxford Handbook of Sleep and Sleep Disorders; Oxford University Press: Oxford, UK, 2011; ISBN 0199704422. [Google Scholar]
- Saper, C.B.; Fuller, P.M.; Pedersen, N.P.; Lu, J.; Scammell, T.E. Sleep state switching. Neuron 2010, 68, 1023–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Supriya, S.; Siuly, S.; Wang, H.; Zhang, Y. EEG Sleep Stages Analysis and Classification Based on Weighed Complex Network Features. IEEE Trans. Emerg. Top. Comput. Intell. 2018, PP, 1–11. [Google Scholar] [CrossRef]
- Altevogt, B.M.; Colten, H.R. Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem; National Academies Press: Washington, DC, USA, 2006; ISBN 0309101115. [Google Scholar]
- Ferrie, J.E.; Kumari, M.; Salo, P.; Singh-Manoux, A.; Kivimäki, M. Sleep epidemiology—A rapidly growing field. Int. J. Epidemiol. 2011, 40, 1431–1437. [Google Scholar] [CrossRef]
- Malik, J.; Lo, Y.-L.; Wu, H. Sleep-wake classification via quantifying heart rate variability by convolutional neural network. Physiol. Meas. 2018, 39, 85004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Rosenberg, W.; Chanwimalueang, T.; Goverdovsky, V.; Looney, D.; Sharp, D.; Mandic, D.P. Smart helmet: Wearable multichannel ECG and EEG. IEEE J. Transl. Eng. Heal. Med. 2016, 4, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siuly, S.; Zhang, Y. Medical big data: Neurological diseases diagnosis through medical data analysis. Data Sci. Eng. 2016, 1, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Kabir, E.; Siuly, S.; Cao, J.; Wang, H. A computer aided analysis scheme for detecting epileptic seizure from EEG data. Int. J. Comput. Intell. Syst. 2018, 11, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Berry, R.B. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications; American Academy of Sleep Medicine: Darien, IL, USA, 2018. [Google Scholar]
- Krauss, P.; Schilling, A.; Bauer, J.; Tziridis, K.; Metzner, C.; Schulze, H.; Traxdorf, M. Analysis of Multichannel EEG Patterns During Human Sleep: A Novel Approach. Front. Hum. Neurosci. 2018, 12, 121. [Google Scholar] [CrossRef] [Green Version]
- Binnie, C.D.; Dekker, E.; Smit, A.; Van der Linden, G. Practical considerations in the positioning of EEG electrodes. Electroencephalogr. Clin. Neurophysiol. 1982, 53, 453–458. [Google Scholar] [CrossRef]
- Ujma, P.P.; Konrad, B.N.; Simor, P.; Gombos, F.; Körmendi, J.; Steiger, A.; Dresler, M.; Bódizs, R. Sleep EEG functional connectivity varies with age and sex, but not general intelligence. Neurobiol. Aging 2019, 78, 87–97. [Google Scholar] [CrossRef]
- Tomescu, M.I.; Rihs, T.A.; Rochas, V.; Hardmeier, M.; Britz, J.; Allali, G.; Fuhr, P.; Eliez, S.; Michel, C.M. From swing to cane: Sex differences of EEG resting-state temporal patterns during maturation and aging. Dev. Cogn. Neurosci. 2018, 31, 58–66. [Google Scholar] [CrossRef]
- Ferrara, M.; Bottasso, A.; Tempesta, D.; Carrieri, M.; De Gennaro, L.; Ponti, G. Gender differences in sleep deprivation effects on risk and inequality aversion: Evidence from an economic experiment. PLoS ONE 2015, 10, e0120029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, A.; Andersen, M.L.; De Mello, M.T.; Bittencourt, L.R.A.; Peruzzo, D.; Tufik, S. Gender and age differences in polysomnography findings and sleep complaints of patients referred to a sleep laboratory. Braz. J. Med. Biol. Res. 2008, 41, 1067–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Talmon, R.; Lo, Y.-L. Assess sleep stage by modern signal processing techniques. IEEE Trans. Biomed. Eng. 2014, 62, 1159–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güneş, S.; Polat, K.; Yosunkaya, Ş. Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting. Expert Syst. Appl. 2010, 37, 7922–7928. [Google Scholar] [CrossRef]
- Fraiwan, L.; Lweesy, K.; Khasawneh, N.; Wenz, H.; Dickhaus, H. Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier. Comput. Methods Programs Biomed. 2012, 108, 10–19. [Google Scholar] [CrossRef]
- Chen, C.; Ugon, A.; Zhang, X.; Amara, A.; Garda, P.; Ganascia, J.-G.; Philippe, C.; Pinna, A. Personalized sleep staging system using evolutionary algorithm and symbolic fusion. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; IEEE: Washington, DC, USA, 2016; pp. 2266–2269. [Google Scholar]
- Jiang, D.; Ma, Y.; Wang, Y. Sleep stage classification using covariance features of multi-channel physiological signals on Riemannian manifolds. Comput. Methods Programs Biomed. 2019, 178, 19–30. [Google Scholar] [CrossRef]
- Sermanet, P.; Chintala, S.; LeCun, Y. Convolutional neural networks applied to house numbers digit classification. arXiv 2012, arXiv:1204.3968. [Google Scholar]
- Vrbancic, G.; Podgorelec, V. Automatic classification of motor impairment neural disorders from EEG signals using deep convolutional neural networks. Elektron. Elektrotechnika 2018, 24, 3–7. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, Y. Automatic sleep stage classification of single-channel EEG by using complex-valued convolutional neural network. Biomed. Eng. Tech. 2018, 63, 177–190. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Mikaeili, M.; Estrada, E.; Nazeran, H. Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; IEEE: Washington, DC, USA, 2008; pp. 1151–1154. [Google Scholar]
- Abdulla, S.; Diykh, M.; Laft, R.L.; Saleh, K.; Deo, R.C. Sleep EEG signal analysis based on correlation graph similarity coupled with an ensemble extreme machine learning algorithm. Expert Syst. Appl. 2019, 138, 112790. [Google Scholar] [CrossRef]
- Phan, H.; Andreotti, F.; Cooray, N.; Chen, O.Y.; Vos, M. De Automatic Sleep Stage Classification Using Single-Channel EEG: Learning Sequential Features with Attention-Based Recurrent Neural Networks. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS 2018, 2018, 1452–1455. [Google Scholar]
- Zhao, M.; Kang, M.; Tang, B.; Pecht, M. Deep Residual Networks with Dynamically Weighted Wavelet Coefficients for Fault Diagnosis of Planetary Gearboxes. IEEE Trans. Ind. Electron. 2018, 65, 4290–4300. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision 2015, Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2323. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Zhao, M.; Kang, M.; Tang, B.; Pecht, M. Multiple Wavelet Coefficients Fusion in Deep Residual Networks for Fault Diagnosis. IEEE Trans. Ind. Electron. 2019, 66, 4696–4706. [Google Scholar] [CrossRef]
- Rajak, B.L.; Gupta, M.; Bhatia, D.; Mukherjee, A.; Paul, S.; Sinha, T.K. Power Spectral Analysis of EEG as a Potential Marker in the Diagnosis of Spastic Cerebral Palsy Cases. Int. J. Biomed. Eng. Sci. 2016, 3, 23–29. [Google Scholar] [CrossRef]
- Unde, S.A.; Shriram, R. PSD Based Coherence Analysis of EEG Signals for Stroop Task. Int. J. Comput. Appl. 2014, 95, 1–5. [Google Scholar] [CrossRef]
- Carrier, J.; Land, S.; Buysse, D.J.; Kupfer, D.J.; Monk, T.H. The effects of age and gender on sleep EEG power spectral density in the middle years of life (ages 20–60 years old). Psychophysiology 2001, 38, 232–242. [Google Scholar] [CrossRef]
- Fernandez, L.M.J.; Luthi, A. Sleep Spindles: Mechanisms and Functions. Physiol. Rev. 2019, 100, 805–868. [Google Scholar] [CrossRef]
- Gabryelska, A.; Feige, B.; Riemann, D.; Spiegelhalder, K.; Johann, A.; Białasiewicz, P.; Hertenstein, E. Can spectral power predict subjective sleep quality in healthy individuals? J. Sleep Res. 2019, 28, e12848. [Google Scholar] [CrossRef]
- The DREAMS Subjects Database. Available online: https://zenodo.org/record/2650142#.Xy-n5igzYkl (accessed on 16 September 2020).
- LeCun, Y.; Jackel, L.D.; Bottou, L.; Cortes, C.; Denker, J.S.; Drucker, H.; Guyon, I.; Muller, U.A.; Sackinger, E.; Simard, P. Learning algorithms for classification: A comparison on handwritten digit recognition. Neural Networks Stat. Mech. Perspect. 1995, 261, 276. [Google Scholar]
- Bi, S.; Liao, Q.; Lu, Z. An Approach of Sleep Stage Classification Based on Time-frequency Analysis and Random Forest on a Single Channel. ACAAI 2018, 155, 209–213. [Google Scholar]
- Belakhdar, I.; Kaaniche, W.; Djmel, R.; Ouni, B. A comparison between ANN and SVM classifier for drowsiness detection based on single EEG channel. In Proceedings of the 2nd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP 2016), Monastir, Tunisia, 21–23 March 2016; IEEE: Washington, DC, USA, 2016; pp. 443–446. [Google Scholar]
- Safri, N.M.; Sha’ameri, A.Z.; Samah, N.A.; Daliman, S. Resolving Gender Difference in Problem Solving Based On the Analysis of Electroencephalogram (EEG) Signals. Int. J. Integr. Eng. 2018, 10, 10. [Google Scholar]
- Chellappa, S.L.; Steiner, R.; Oelhafen, P.; Cajochen, C. Sex differences in light sensitivity impact on brightness perception, vigilant attention and sleep in humans. Sci. Rep. 2017, 7, 14215. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, M.S. Periodogram analysis and continuous spectra. Biometrika 1950, 37, 1–16. [Google Scholar] [CrossRef]
- Bartlett, M.S.; Medhi, J. On the efficiency of procedures for smoothing periodograms from time series with continuous spectra. Biometrika 1955, 42, 143–150. [Google Scholar] [CrossRef]
- Christensen, J.A.E.; Munk, E.G.S.; Peppard, P.E.; Young, T.; Mignot, E.; Sorensen, H.B.D.; Jennum, P. The diagnostic value of power spectra analysis of the sleep electroencephalography in narcoleptic patients. Sleep Med. 2015, 16, 1516–1527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahi, P.K.; Mehra, R. Analysis of power spectrum estimation using welch method for various window techniques. Int. J. Emerg. Technol. Eng. 2014, 2, 106–109. [Google Scholar]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 630–645. [Google Scholar]
- Lin, X.; Zhao, C.; Pan, W. Towards accurate binary convolutional neural network. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 345–353. [Google Scholar]
- Pakhomov, D.; Premachandran, V.; Allan, M.; Azizian, M.; Navab, N. Deep residual learning for instrument segmentation in robotic surgery. In Proceedings of the International Workshop on Machine Learning in Medical Imaging; Springer: Cham, Switzerland, 2019; pp. 566–573. [Google Scholar]
- Khan, R.U.; Zhang, X.; Kumar, R.; Aboagye, E.O. Evaluating the performance of resnet model based on image recognition. In Proceedings of the 2018 International Conference on Computing and Artificial Intelligence, Chengdu, China, 12–14 March 2018; ACM: New York, NY, USA, 2018; pp. 86–90. [Google Scholar]
- Zhou, P.; Austin, J. Learning criteria for training neural network classifiers. Neural Comput. Appl. 1998, 7, 334–342. [Google Scholar] [CrossRef]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Browne, M.W. Cross-validation methods. J. Math. Psychol. 2000, 44, 108–132. [Google Scholar] [CrossRef] [Green Version]
- Luque, A.; Carrasco, A.; Martín, A.; de las Heras, A. The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognit. 2019, 91, 216–231. [Google Scholar] [CrossRef]
- Goutte, C.; Gaussier, E. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In Proceedings of the European Conference on Information Retrieval, Santiago de Compostela, Spain, 21–23 March 2005; Springer: Cham, Switzerland, 2005; pp. 345–359. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Machine learning basics. Deep Learn. 2016, 1, 98–164. [Google Scholar]
Sex | Dataset | Subject Amount | EEG Channel | EEG Scalp Source | Sleep Stages | ||||
---|---|---|---|---|---|---|---|---|---|
Female | Dataset 1 | 16 | Fp2-A1 | Pre-frontal | Wake | REM | N1 | N2 | N3 |
Dataset 2 | 16 | Cz2-A1 | Central | Wake | REM | N1 | N2 | N3 | |
Dataset 3 | 16 | O2-A1 | Occipital | Wake | REM | N1 | N2 | N3 | |
Male | Dataset 4 | 04 | Fp2-A1 | Pre-frontal | Wake | REM | N1 | N2 | N3 |
Dataset 5 | 04 | Cz2-A1 | Central | Wake | REM | N1 | N2 | N3 | |
Dataset 6 | 04 | O2-A1 | Occipital | Wake | REM | N1 | N2 | N3 |
Sex | Dataset | Training Samples (75%) | Test Samples (25%) | Total Samples | |
---|---|---|---|---|---|
Training (75%) | Validation (25%) | ||||
Female | 1 | 3150 | 1050 | 1400 | 5600 |
2 | 3150 | 1050 | 1400 | 5600 | |
3 | 3150 | 1050 | 1400 | 5600 | |
Male | 4 | 788 | 262 | 350 | 1400 |
5 | 788 | 262 | 350 | 1400 | |
6 | 788 | 262 | 350 | 1400 |
Sex | Dataset | F1 (%) | Accuracy (%) | Sex-Based Accuracy (%) | Final Accuracy (%) | ||||
---|---|---|---|---|---|---|---|---|---|
Wake | REM | N1 | N2 | N3 | |||||
Female | 1 | 85.2 | 87.5 | 83.6 | 82.6 | 83.1 | 84.4 | 87.8 | 85.8 |
2 | 89.7 | 89.5 | 88.4 | 88.3 | 89.4 | 89.1 | |||
3 | 89.4 | 90.4 | 88.4 | 90.6 | 91.0 | 89.9 | |||
Male | 4 | 80.5 | 78.8 | 83.3 | 80.9 | 82.4 | 81.1 | 83.7 | |
5 | 84.5 | 87.5 | 83.0 | 85.6 | 83.6 | 84.8 | |||
6 | 85.8 | 84.7 | 84.6 | 86.6 | 84.6 | 85.3 |
Classification Methods | Accuracy (%) with the Amount of Improvement * (%) by the Proposed Method | |||
---|---|---|---|---|
Female | Improvement * | Male | Improvement * | |
Proposed | 87.8 | - | 83.7 | - |
Raw EEG + ResNet | 78.2 | 9.6 | 76.9 | 6.8 |
PSD + CNN (5 Layers) | 71.3 | 16.5 | 70.4 | 13.3 |
PSD + CNN (10 Layers) | 78.6 | 9.2 | 74.1 | 9.6 |
PSD + CNN (14 Layers) | 81.9 | 5.9 | 80.3 | 3.4 |
PSD + CNN (18 Layers) | 84.0 | 3.8 | 82.4 | 1.3 |
FE+ RF [41] | 47.2 | 40.6 | 45.8 | 37.9 |
FFT+ MPC [42] | 61.8 | 26.0 | 61.7 | 22.0 |
PSD + MPC | 51.8 | 36.0 | 52.4 | 31.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, M.J.; Shon, D.; Im, K.; Choi, H.-K.; Yoo, D.-S.; Kim, J.-M. Sleep State Classification Using Power Spectral Density and Residual Neural Network with Multichannel EEG Signals. Appl. Sci. 2020, 10, 7639. https://doi.org/10.3390/app10217639
Hasan MJ, Shon D, Im K, Choi H-K, Yoo D-S, Kim J-M. Sleep State Classification Using Power Spectral Density and Residual Neural Network with Multichannel EEG Signals. Applied Sciences. 2020; 10(21):7639. https://doi.org/10.3390/app10217639
Chicago/Turabian StyleHasan, Md Junayed, Dongkoo Shon, Kichang Im, Hyun-Kyun Choi, Dae-Seung Yoo, and Jong-Myon Kim. 2020. "Sleep State Classification Using Power Spectral Density and Residual Neural Network with Multichannel EEG Signals" Applied Sciences 10, no. 21: 7639. https://doi.org/10.3390/app10217639
APA StyleHasan, M. J., Shon, D., Im, K., Choi, H. -K., Yoo, D. -S., & Kim, J. -M. (2020). Sleep State Classification Using Power Spectral Density and Residual Neural Network with Multichannel EEG Signals. Applied Sciences, 10(21), 7639. https://doi.org/10.3390/app10217639