Navigated 3D Ultrasound in Brain Metastasis Surgery: Analyzing the Differences in Object Appearances in Ultrasound and Magnetic Resonance Imaging
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Patient Characteristics
3.2. Tumor Object Characteristics
3.3. Influence of Registration
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Tabouret, E.; Chinot, O.; Metellus, P.; Tallet, A.; Viens, P.; Goncalves, A. Recent trends in epidemiology of brain metastases: An overview. Anticancer Res. 2012, 32, 4655–4662. [Google Scholar] [PubMed]
- Davis, F.G.; Dolecek, T.A.; McCarthy, B.J.; Villano, J.L. Toward determining the lifetime occurrence of metastatic brain tumors estimated from 2007 United States cancer incidence data. Neuro-Oncology 2012, 14, 1171–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauko, A.; Rauf, Y.; Ahluwalia, M.S. Medical management of brain metastases. Neuro-Oncol. Adv. 2020, 2, vdaa015. [Google Scholar] [CrossRef] [PubMed]
- Sankey, E.W.; Tsvankin, V.; Grabowski, M.M.; Nayar, G.; Batich, K.A.; Risman, A.; Champion, C.D.; Salama, A.K.S.; Goodwin, C.R.; Fecci, P.E. Operative and peri-operative considerations in the management of brain metastasis. Cancer Med. 2019, 8, 6809–6831. [Google Scholar] [CrossRef] [PubMed]
- Soffietti, R.; Abacioglu, U.; Baumert, B.; Combs, S.E.; Kinhult, S.; Kros, J.M.; Marosi, C.; Metellus, P.; Radbruch, A.; Villa Freixa, S.S.; et al. Diagnosis and treatment of brain metastases from solid tumors: Guidelines from the European Association of Neuro-Oncology (EANO). Neuro Oncol. 2017, 19, 162–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogelbaum, M.A.; Suh, J.H. Resectable brain metastases. J. Clin. Oncol. 2006, 24, 1289–1294. [Google Scholar] [CrossRef]
- Bayer, S.; Maier, A.; Ostermeier, M.; Fahrig, R. Intraoperative Imaging Modalities and Compensation for Brain Shift in Tumor Resection Surgery. Int. J. Biomed. Imaging 2017, 2017, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Nimsky, C.; Ganslandt, O.; Cerny, S.; Hastreiter, P.; Greiner, G.; Fahlbusch, R. Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 2000, 47, 1070–1079. [Google Scholar] [CrossRef]
- Roberts, D.W.; Hartov, A.; Kennedy, F.E.; Miga, M.I.; Paulsen, K.D. Intraoperative brain shift and deformation: A quantitative analysis of cortical displacement in 28 cases. Neurosurgery 1998, 43, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.J.; Kall, B.A.; Goerss, S.; Earnest, F.T. Computer-assisted stereotaxic laser resection of intra-axial brain neoplasms. J. Neurosurg. 1986, 64, 427–439. [Google Scholar] [CrossRef]
- Dorward, N.L.; Alberti, O.; Velani, B.; Gerritsen, F.A.; Harkness, W.F.; Kitchen, N.D.; Thomas, D.G. Postimaging brain distortion: Magnitude, correlates, and impact on neuronavigation. J. Neurosurg. 1998, 88, 656–662. [Google Scholar] [CrossRef] [Green Version]
- Hill, D.L.; Maurer, C.R., Jr.; Maciunas, R.J.; Barwise, J.A.; Fitzpatrick, J.M.; Wang, M.Y. Measurement of intraoperative brain surface deformation under a craniotomy. Neurosurgery 1998, 43, 514–526. [Google Scholar] [CrossRef]
- Audette, M.A.; Siddiqi, K.; Peters, T.M. Level-Set Surface Segmentation and Fast Cortical Range Image Tracking for Computing Intrasurgical Deformations. In Medical Image Computing and Computer-Assisted Intervention—MICCAI’99, Proceeding of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Cambridge, UK, 19–22 September, 1999; Springer: Berlin/Heidelberg, Germany, 1999; pp. 788–797. [Google Scholar]
- Wirtz, C.R.; Bonsanto, M.M.; Knauth, M.; Tronnier, V.M.; Albert, F.K.; Staubert, A.; Kunze, S. Intraoperative magnetic resonance imaging to update interactive navigation in neurosurgery: Method and preliminary experience. Comput. Aided Surg. 1997, 2, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Nimsky, C.; Ganslandt, O.; Hastreiter, P.; Fahlbusch, R. Intraoperative compensation for brain shift. Surg. Neurol. 2001, 56, 357–364. [Google Scholar] [CrossRef]
- Nabavi, A.; Black, P.M.; Gering, D.T.; Westin, C.F.; Mehta, V.; Pergolizzi, R.S., Jr.; Ferrant, M.; Warfield, S.K.; Hata, N.; Schwartz, R.B.; et al. Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 2001, 48, 787–797. [Google Scholar] [CrossRef]
- Nimsky, C.; Ganslandt, O.; von Keller, B.; Romstock, J.; Fahlbusch, R. Intraoperative high-field-strength MR imaging: Implementation and experience in 200 patients. Radiology 2004, 233, 67–78. [Google Scholar] [CrossRef]
- Reinertsen, I.; Lindseth, F.; Askeland, C.; Iversen, D.H.; Unsgard, G. Intra-operative correction of brain-shift. Acta Neurochir. 2014, 156, 1301–1310. [Google Scholar] [CrossRef] [PubMed]
- Chandler, W.F.; Knake, J.E.; McGillicuddy, J.E.; Lillehei, K.O.; Silver, T.M. Intraoperative use of real-time ultrasonography in neurosurgery. J. Neurosurg. 1982, 57, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Knake, J.E.; Chandler, W.F.; McGillicuddy, J.E.; Silver, T.M.; Gabrielsen, T.O. Intraoperative sonography for brain tumor localization and ventricular shunt placement. Am. J. Roentgenol. 1982, 139, 733–738. [Google Scholar] [CrossRef] [Green Version]
- Sastry, R.; Bi, W.L.; Pieper, S.; Frisken, S.; Kapur, T.; Wells, W., III; Golby, A.J. Applications of Ultrasound in the Resection of Brain Tumors. J. Neuroimaging 2017, 27, 5–15. [Google Scholar] [CrossRef]
- Gronningsaeter, A.; Kleven, A.; Ommedal, S.; Aarseth, T.E.; Lie, T.; Lindseth, F.; Lango, T.; Unsgard, G. SonoWand, an ultrasound-based neuronavigation system. Neurosurgery 2000, 47, 1373–1379. [Google Scholar] [CrossRef]
- Ohue, S.; Kumon, Y.; Nagato, S.; Kohno, S.; Harada, H.; Nakagawa, K.; Kikuchi, K.; Miki, H.; Ohnishi, T. Evaluation of intraoperative brain shift using an ultrasound-linked navigation system for brain tumor surgery. Neurol. Med. Chir. 2010, 50, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Unsgaard, G.; Ommedal, S.; Muller, T.; Gronningsaeter, A.; Nagelhus Hernes, T.A. Neuronavigation by intraoperative three-dimensional ultrasound: Initial experience during brain tumor resection. Neurosurgery 2002, 50, 804–812. [Google Scholar] [CrossRef] [Green Version]
- Tronnier, V.M.; Bonsanto, M.M.; Staubert, A.; Knauth, M.; Kunze, S.; Wirtz, C.R. Comparison of intraoperative MR imaging and 3D-navigated ultrasonography in the detection and resection control of lesions. Neurosurg. Focus 2001, 10, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Munkvold, B.K.R.; Jakola, A.S.; Reinertsen, I.; Sagberg, L.M.; Unsgard, G.; Solheim, O. The Diagnostic Properties of Intraoperative Ultrasound in Glioma Surgery and Factors Associated with Gross Total Tumor Resection. World Neurosurg. 2018, 115, e129–e136. [Google Scholar] [CrossRef]
- Keles, G.E.; Lamborn, K.R.; Berger, M.S. Coregistration accuracy and detection of brain shift using intraoperative sononavigation during resection of hemispheric tumors. Neurosurgery 2003, 53, 556–562. [Google Scholar] [CrossRef]
- Comeau, R.M.; Fenster, A.; Peters, T.M. Intraoperative US in interactive image-guided neurosurgery. Radiographics 1998, 18, 1019–1027. [Google Scholar] [CrossRef] [Green Version]
- Letteboer, M.M.; Willems, P.W.; Viergever, M.A.; Niessen, W.J. Brain shift estimation in image-guided neurosurgery using 3-D ultrasound. IEEE Trans. Biomed. Eng. 2005, 52, 268–276. [Google Scholar] [CrossRef]
- Chacko, A.G.; Kumar, N.K.; Chacko, G.; Athyal, R.; Rajshekhar, V. Intraoperative ultrasound in determining the extent of resection of parenchymal brain tumours—a comparative study with computed tomography and histopathology. Acta Neurochir. 2003, 145, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Gerganov, V.M.; Samii, A.; Akbarian, A.; Stieglitz, L.; Samii, M.; Fahlbusch, R. Reliability of intraoperative high-resolution 2D ultrasound as an alternative to high-field strength MR imaging for tumor resection control: A prospective comparative study. J. Neurosurg. 2009, 111, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Gerganov, V.M.; Samii, A.; Giordano, M.; Samii, M.; Fahlbusch, R. Two-dimensional high-end ultrasound imaging compared to intraoperative MRI during resection of low-grade gliomas. J. Clin. Neurosci. 2011, 18, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Rygh, O.M.; Selbekk, T.; Torp, S.H.; Lydersen, S.; Hernes, T.A.; Unsgaard, G. Comparison of navigated 3D ultrasound findings with histopathology in subsequent phases of glioblastoma resection. Acta Neurochir. 2008, 150, 1033–1041. [Google Scholar] [CrossRef]
- Unsgaard, G.; Selbekk, T.; Brostrup Muller, T.; Ommedal, S.; Torp, S.H.; Myhr, G.; Bang, J.; Nagelhus Hernes, T.A. Ability of navigated 3D ultrasound to delineate gliomas and metastases—comparison of image interpretations with histopathology. Acta Neurochir. 2005, 147, 1259–1269. [Google Scholar] [CrossRef] [PubMed]
- Carl, B.; Bopp, M.; Sass, B.; Nimsky, C. Intraoperative computed tomography as reliable navigation registration device in 200 cranial procedures. Acta Neurochir. 2018, 160, 1681–1689. [Google Scholar] [CrossRef]
- Dice, L.R. Measures of the Amount of Ecologic Association Between Species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Zou, K.H.; Warfield, S.K.; Bharatha, A.; Tempany, C.M.; Kaus, M.R.; Haker, S.J.; Wells, W.M., III; Jolesz, F.A.; Kikinis, R. Statistical validation of image segmentation quality based on a spatial overlap index. Acad. Radiol. 2004, 11, 178–189. [Google Scholar] [CrossRef] [Green Version]
- Nitsch, J.; Klein, J.; Dammann, P.; Wrede, K.; Gembruch, O.; Moltz, J.H.; Meine, H.; Sure, U.; Kikinis, R.; Miller, D. Automatic and efficient MRI-US segmentations for improving intraoperative image fusion in image-guided neurosurgery. Neuroimage Clin. 2019, 22, 101766. [Google Scholar] [CrossRef]
- Huttenlocher, D.P.; Klanderman, G.A.; Rucklidge, W.J. Comparing Images Using the Hausdorff Distance. IEEE Trans. Pattern Anal. Mach. Intell. 1993, 15, 850–863. [Google Scholar] [CrossRef] [Green Version]
- Flusser, J.; Suk, T. A moment-based approach to registration of images with affine geometric distortion. IEEE Trans. Geosci. Remote Sens. 1994, 32, 382–387. [Google Scholar] [CrossRef]
- Paul, K.; Graessl, A.; Rieger, J.; Lysiak, D.; Huelnhagen, T.; Winter, L.; Heidemann, R.; Lindner, T.; Hadlich, S.; Zimpfer, A.; et al. Diffusion-sensitized ophthalmic magnetic resonance imaging free of geometric distortion at 3.0 and 7.0 T: A feasibility study in healthy subjects and patients with intraocular masses. Investig. Radiol. 2015, 50, 309–321. [Google Scholar] [CrossRef]
- Koivukangas, J.; Louhisalmi, Y.; Alakuijala, J.; Oikarinen, J. Ultrasound-controlled neuronavigator-guided brain surgery. J. Neurosurg. 1993, 79, 36–42. [Google Scholar] [CrossRef]
- Hata, N.; Dohi, T.; Iseki, H.; Takakura, K. Development of a frameless and armless stereotactic neuronavigation system with ultrasonographic registration. Neurosurgery 1997, 41, 608–613. [Google Scholar] [CrossRef]
- Hirschberg, H.; Unsgaard, G. Incorporation of ultrasonic imaging in an optically coupled frameless stereotactic system. Acta Neurochir Suppl. 1997, 68, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Prada, F.; del Bene, M.; Mattei, L.; Lodigiani, L.; DeBeni, S.; Kolev, V.; Vetrano, I.; Solbiati, L.; Sakas, G.; DiMeco, F. Preoperative magnetic resonance and intraoperative ultrasound fusion imaging for real-time neuronavigation in brain tumor surgery. Ultraschall Med. 2015, 36, 174–186. [Google Scholar] [CrossRef] [Green Version]
- Lunn, K.E.; Paulsen, K.D.; Roberts, D.W.; Kennedy, F.E.; Hartov, A.; West, J.D. Displacement estimation with co-registered ultrasound for image guided neurosurgery: A quantitative in vivo porcine study. IEEE Trans. Med. Imaging 2003, 22, 1358–1368. [Google Scholar] [CrossRef]
- Schneider, R.J.; Perrin, D.P.; Vasilyev, N.V.; Marx, G.R.; Del Nido, P.J.; Howe, R.D. Real-time image-based rigid registration of three-dimensional ultrasound. Med. Image Anal. 2012, 16, 402–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coupe, P.; Hellier, P.; Morandi, X.; Barillot, C. 3D Rigid Registration of Intraoperative Ultrasound and Preoperative MR Brain Images based on Hyperechogenic Structures. Int. J. Biomed. Imaging 2012, 2012, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Canalini, L.; Klein, J.; Miller, D.; Kikinis, R. Segmentation-based registration of ultrasound volumes for glioma resection in image-guided neurosurgery. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 1697–1713. [Google Scholar] [CrossRef] [Green Version]
- Rackerseder, J.; Göbl, R.; Navab, N.; Hennersperger, C. Fully Automatic Segmentation of 3D Brain Ultrasound: Learning from Coarse Annotations. arXiv 2019, arXiv:1904.08655. [Google Scholar]
- Risholm, P.; Pieper, S.; Samset, E.; Wells, W.M., III. Summarizing and visualizing uncertainty in non-rigid registration. Med Image Comput Comput Assist Interv. 2010, 13 Pt 2, 554–561, PMCID:PMC2976974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Case | Age [Years] | Sex | Localization | Diagnosis/ Primary Tumor |
---|---|---|---|---|
1 | 59.5 | male | left frontal | melanoma |
2 | 73.3 | male | right frontal | ADC, colon |
3 | 32.7 | male | left frontal | melanoma |
4 | 64.2 | male | cerebellar | ADC, lung |
5 | 50.7 | female | left temporal | ADC, lung |
6 | 69.0 | male | right parieto-occipital | ADC, gall bladder |
7 | 78.1 | male | cerebellar | RCC |
8 | 76.6 | female | left occipital | ADC, lung |
9 | 79.1 | male | right frontal | RCC |
10 | 62.8 | female | left frontal | ADC, lung |
11 | 57.2 | female | left frontal | CA, CUP |
12 | 59.2 | female | cerebellar | ADC, lung |
13 | 62.8 | female | left frontal | NEC, lung |
14 | 56.7 | female | left frontal | melanoma |
15 | 67.3 | female | left parietal | RCC |
16 | 72.8 | male | right insular | ADC, GI |
17 | 74.1 | female | left occipital | ADC, colon |
18 | 71.1 | male | cerebellar | RCC |
19 | 56.0 | male | left frontal | melanoma |
20 | 28.6 | female | right frontal | mammary CA (NST) |
21 * | 53.5 | male | right frontal | NEC, lung |
22 | 50.5 | female | right occipital | melanoma |
23 | 59.5 | male | left parietal | ADC, lung |
24 | 51.2 | female | cerebellar | NEC, lung |
25 | 65.3 | female | left temporo-parietal | ADC, lung |
26 | 74.6 | female | left occipital | ADC, colon |
27 | 71.5 | male | left frontal | ADC, esophagus |
28 | 78.2 | male | left temporal | melanoma |
29 | 67.6 | female | left parietal | NEC, lung |
30 | 69.5 | female | cerebellar | ADC, lung |
31 | 55.4 | female | right frontal | ADC, lung |
32 | 70.7 | male | right frontal | ADC, lung |
33 | 41.8 | female | right frontal | mammary ADC |
34 | 69.7 | male | right parietal | mammary ADC |
35 | 58.6 | male | left CN | melanoma |
36 | 58.6 | male | left frontal | ADC, lung |
37 * | 64.9 | female | left frontal | ADC, lung |
Case | Tumor Volume MRI [cm3] | Tumor Volume US [cm3] | Dice Coefficient * | Hausdorff Distance [mm] | Center of Gravity ** [mm] | Target Registration Error [mm] |
---|---|---|---|---|---|---|
1 | 5.11 | 5.63 | 0.44 | 9.33 | 7.28 | 0.58 |
2 | 5.84 | 5.34 | 0.68 | 7.33 | 4.56 | 0.45 |
3 | 23.90 | 23.80 | 0.84 | 8.41 | 2.42 | 1.51 |
4 | 1.19 | 1.14 | 0.73 | 4.50 | 1.95 | 1.21 |
5 | 1.95 | 1.96 | 0.83 | 2.45 | 1.49 | 0.56 |
6 | 9.96 | 9.63 | 0.73 | 11.11 | 3.91 | 0.53 |
7 | 3.42 | 3.10 | 0.78 | 4.39 | 1.96 | 0.93 |
8 | 6.95 | 7.90 | 0.85 | 4.29 | 1.30 | 0.78 |
9 | 9.63 | 9.83 | 0.83 | 5.73 | 2.63 | 0.63 |
10 | 0.43 | 0.47 | 0.21 | 6.00 | 4.84 | 0.93 |
11 | 77.70 | 77.60 | 0.88 | 8.10 | 2.56 | 0.41 |
12 | 8.52 | 9.87 | 0.84 | 4.89 | 1.89 | 0.66 |
13 | 31.00 | 30.40 | 0.68 | 15.30 | 7.98 | 0.87 |
14 | 9.39 | 9.93 | 0.56 | 10.55 | 7.85 | 0.33 |
15 | 0.17 | 0.16 | 0.26 | 6.42 | 4.07 | 0.79 |
16 | 34.40 | 32.40 | 0.87 | 6.29 | 2.58 | 0.92 |
17 | 11.1 | 10 | 0.72 | 9.60 | 4.44 | 0.45 |
18 | 28.10 | 26.30 | 0.86 | 6.02 | 1.94 | 0.72 |
19 | 12.00 | 10.90 | 0.73 | 8.78 | 5.09 | 0.56 |
20 | 6.24 | 5.59 | 0.46 | 9.12 | 5.44 | 0.41 |
22 | 42.40 | 41.00 | 0.64 | 11.70 | 7.13 | 1.11 |
23 | 1.71 | 1.38 | 0.38 | 8.60 | 6.52 | 0.68 |
24 | 14.30 | 13.90 | 0.77 | 6.60 | 3.26 | 1.58 |
25 | 19.90 | 20.20 | 0.85 | 6.77 | 0.72 | 1.16 |
26 | 6.73 | 7.69 | 0.71 | 9.15 | 2.61 | 0.80 |
27 | 4.62 | 3.62 | 0.74 | 7.59 | 3.18 | 1.13 |
28 | 36.60 | 36.50 | 0.85 | 9.75 | 1.92 | - |
29 | 3.38 | 3.27 | 0.76 | 5.24 | 1.28 | 1.02 |
30 | 9.71 | 8.80 | 0.84 | 5.12 | 1.44 | - |
31 | 0.61 | 0.65 | 0.00 | 13.83 | 12.26 | - |
32 | 10.50 | 10.20 | 0.82 | 11.02 | 1.41 | 1.06 |
33 | 6.57 | 5.58 | 0.75 | 11.31 | 3.00 | 1.40 |
34 | 3.54 | 3.21 | 0.76 | 11.05 | 1.36 | 1.55 |
35 | 28.80 | 33.30 | 0.81 | 7.81 | 2.96 | 0.37 |
36 | 0.71 | 1.00 | 0.32 | 8.53 | 5.47 | 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saß, B.; Carl, B.; Pojskic, M.; Nimsky, C.; Bopp, M. Navigated 3D Ultrasound in Brain Metastasis Surgery: Analyzing the Differences in Object Appearances in Ultrasound and Magnetic Resonance Imaging. Appl. Sci. 2020, 10, 7798. https://doi.org/10.3390/app10217798
Saß B, Carl B, Pojskic M, Nimsky C, Bopp M. Navigated 3D Ultrasound in Brain Metastasis Surgery: Analyzing the Differences in Object Appearances in Ultrasound and Magnetic Resonance Imaging. Applied Sciences. 2020; 10(21):7798. https://doi.org/10.3390/app10217798
Chicago/Turabian StyleSaß, Benjamin, Barbara Carl, Mirza Pojskic, Christopher Nimsky, and Miriam Bopp. 2020. "Navigated 3D Ultrasound in Brain Metastasis Surgery: Analyzing the Differences in Object Appearances in Ultrasound and Magnetic Resonance Imaging" Applied Sciences 10, no. 21: 7798. https://doi.org/10.3390/app10217798