A Mixed Method with Effective Color Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the BS+ATCQ Algorithm
2.1.1. The Binary Splitting Method
Algorithm 1 BS algorithm. |
|
2.1.2. The Ant-Tree for Color Quantization Method
Algorithm 2 ATCQ algorithm. |
|
Algorithm 3 Support case operations ()-ATCQ. |
|
Algorithm 4 Ant case operations ()-ATCQ. |
|
2.1.3. The BS+ATCQ Method
Algorithm 5 Binary splitting + ATCQ algorithm. |
|
2.2. The ITATCQ Method
Algorithm 6 ITATCQ algorithm. |
|
3. The BS+ITATCQ Method
4. Results and Discussion
4.1. Results of BS and ITATCQ Applied Independently
4.2. Results of BS+ATCQ
4.3. Comparison of Results
4.4. Results of Other Methods
- Each iteration of K-means considers an initial set of centroids and uses these centroids to associate each pixel with a cluster. The values of the centroids are the same until the end of the iteration. On the other hand, the colors used by ITATCQ to associate an ant to a subtree are updated during each iteration of the algorithm. When a new ant is associated with a subtree, the color of that subtree is updated to include the color of the ant. Therefore, when the next ant is processed, the set of colors used to decide its destination is different from the set considered for the previous ant.
- K-means recomputes all the centroids at the end of each iteration. In contrast, ITATCQ does not recompute the colors of the palette at the end of each iteration, which accelerates the method.
- The final palette defined by K-means includes the average color of each cluster defined during the last iteration. Nevertheless, the colors of the final palette defined by ITATCQ are computed based on the color of all the ants connected to each subtree throughout all the iterations of the algorithm. When ITATCQ is applied to the result of BS, the colors of the palette defined by BS are also used to compute the final color of each element of the palette.
4.5. Statistical Significance of the Results
5. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
Abbreviations
ABC | Artificial bee colony |
ATCQ | Ant-tree for color quantization |
BS | Binary splitting |
BSKM | K-means applied to the result of Binary splitting |
FA | Firefly algorithm |
ITATCQ | Iterative ant-tree for color quantization |
KM | K-means |
MC | Median-cut |
MSE | Mean squared error |
NQ | Neuquant |
OC | Octree |
SFLA | Shuffled-frog leaping algorithm |
VB | Variance-based |
WATCQ | Wu’s method combined with ant-tree for color quantization |
WU | Wu’s method |
Appendix A
Iteration 5 | Iteration 25 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
32 Colors | 64 Colors | 128 Colors | 256 Colors | 32 Colors | 64 Colors | 128 Colors | 256 Colors | |||||||||
Lenna | 121.30 | 549 | 74.17 | 927 | 47.22 | 1594 | 30.98 | 2885 | 119.98 | 2051 | 73.46 | 3769 | 46.74 | 6837 | 30.63 | 12,993 |
Pepp. | 245.08 | 533 | 147.94 | 909 | 94.38 | 1594 | 57.96 | 2873 | 240.28 | 1999 | 144.95 | 3688 | 92.12 | 6889 | 57.07 | 12,863 |
Plane | 69.43 | 485 | 39.45 | 867 | 24.72 | 1554 | 15.73 | 2819 | 68.52 | 1922 | 38.77 | 3582 | 24.17 | 6814 | 15.47 | 12,813 |
Mand. | 390.36 | 586 | 244.91 | 935 | 157.83 | 1624 | 101.21 | 2948 | 385.83 | 2131 | 242.81 | 3729 | 156.06 | 6885 | 99.94 | 13,042 |
Blond | 92.15 | 559 | 50.94 | 927 | 31.26 | 1603 | 18.98 | 2886 | 90.19 | 2063 | 50.15 | 3759 | 30.70 | 6908 | 18.68 | 12,962 |
Lake | 212.47 | 550 | 137.23 | 906 | 88.31 | 1625 | 56.62 | 2888 | 208.88 | 2073 | 134.89 | 3669 | 86.84 | 6896 | 55.91 | 12,965 |
Hydr. | 178.15 | 535 | 106.23 | 902 | 63.25 | 1585 | 38.16 | 3009 | 174.77 | 2017 | 104.79 | 3626 | 62.31 | 6830 | 37.69 | 13,211 |
EPSZ | 119.11 | 551 | 62.84 | 917 | 38.12 | 1612 | 23.71 | 2928 | 117.59 | 2068 | 61.96 | 3747 | 37.58 | 7007 | 23.43 | 13,069 |
Mach. | 73.75 | 538 | 43.01 | 894 | 25.75 | 1590 | 15.71 | 2857 | 72.44 | 1983 | 42.47 | 3687 | 25.42 | 6938 | 15.55 | 13,159 |
Text | 35.14 | 534 | 20.20 | 901 | 12.63 | 1652 | 8.15 | 2946 | 34.60 | 2040 | 19.92 | 3705 | 12.53 | 7095 | 8.06 | 13,048 |
Sign | 64.18 | 525 | 33.53 | 881 | 19.04 | 1584 | 11.29 | 2825 | 63.36 | 1992 | 32.95 | 3644 | 18.74 | 6883 | 11.15 | 12,841 |
Bikes | 111.29 | 544 | 59.82 | 900 | 32.95 | 1614 | 18.53 | 2902 | 109.37 | 2061 | 58.37 | 3694 | 32.30 | 7001 | 18.24 | 13,019 |
Sail. | 70.74 | 781 | 39.37 | 1323 | 20.82 | 2343 | 12.04 | 4236 | 69.26 | 2909 | 38.07 | 5412 | 20.32 | 10,189 | 11.82 | 19,138 |
Moto. | 216.31 | 819 | 113.86 | 1364 | 65.84 | 2375 | 39.07 | 4423 | 209.61 | 3039 | 110.73 | 5470 | 64.35 | 10,182 | 38.34 | 19,559 |
Lady | 113.09 | 806 | 64.28 | 1360 | 35.60 | 2411 | 19.98 | 4393 | 112.10 | 2992 | 63.27 | 5499 | 34.82 | 10,379 | 19.70 | 19,591 |
Caps | 168.76 | 754 | 78.29 | 1293 | 39.60 | 2317 | 21.28 | 4324 | 161.85 | 2885 | 75.85 | 5370 | 38.29 | 10,121 | 20.79 | 19,485 |
Parr. | 241.77 | 791 | 130.41 | 1362 | 77.33 | 2357 | 44.27 | 4298 | 237.88 | 2992 | 128.97 | 5489 | 75.53 | 10,321 | 43.46 | 19,362 |
Girl | 135.24 | 787 | 74.44 | 1333 | 41.74 | 2383 | 24.20 | 4359 | 133.58 | 3011 | 73.33 | 5430 | 41.03 | 10,331 | 23.80 | 19,723 |
Land. | 104.87 | 633 | 56.53 | 1054 | 32.14 | 1883 | 19.55 | 3441 | 103.12 | 2394 | 55.80 | 4317 | 31.82 | 8086 | 19.36 | 15,246 |
Head. | 120.85 | 599 | 69.36 | 1042 | 41.82 | 1830 | 24.94 | 3365 | 119.15 | 2326 | 67.87 | 4284 | 41.03 | 7953 | 24.52 | 15,199 |
Dess. | 129.76 | 605 | 69.02 | 1025 | 40.91 | 1819 | 24.15 | 3306 | 127.40 | 2306 | 68.27 | 4246 | 40.42 | 8049 | 23.79 | 15,149 |
Snow. | 130.35 | 617 | 65.87 | 1044 | 36.66 | 1860 | 21.57 | 3435 | 128.95 | 2362 | 64.79 | 4245 | 35.98 | 8112 | 21.15 | 15,218 |
Cath. | 62.12 | 519 | 33.20 | 874 | 19.08 | 1561 | 11.66 | 2891 | 60.88 | 1960 | 32.59 | 3576 | 18.78 | 6831 | 11.53 | 13,235 |
Beach | 146.49 | 543 | 76.99 | 893 | 44.83 | 1574 | 27.43 | 2974 | 144.93 | 2034 | 75.71 | 3638 | 44.35 | 6853 | 27.08 | 13,409 |
139.70 | 614 | 78.83 | 1035 | 47.16 | 1831 | 28.63 | 3342 | 137.27 | 2317 | 77.53 | 4220 | 46.34 | 7933 | 28.22 | 15,012 |
32 Colors | 64 Colors | 128 Colors | 256 Colors | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | Lenna | 120.99 | 121.07 | 0.04 | 1842 | 74.03 | 74.07 | 0.03 | 2779 | 47.13 | 47.16 | 0.02 | 4651 | 30.91 | 30.92 | 0.01 | 8326 |
Pepp. | 243.04 | 243.24 | 0.11 | 1292 | 141.19 | 141.32 | 0.08 | 2709 | 88.25 | 88.31 | 0.04 | 4501 | 56.66 | 56.70 | 0.02 | 8078 | |
Plane | 66.64 | 66.69 | 0.02 | 1760 | 38.32 | 38.36 | 0.02 | 2719 | 23.74 | 23.75 | 0.01 | 4575 | 15.31 | 15.32 | 0.01 | 8356 | |
Mand. | 388.67 | 389.03 | 0.17 | 1811 | 244.49 | 244.61 | 0.06 | 2698 | 157.35 | 157.48 | 0.07 | 4577 | 100.91 | 100.99 | 0.05 | 8203 | |
Blond | 91.93 | 92.03 | 0.06 | 1812 | 50.70 | 50.74 | 0.02 | 2694 | 31.01 | 31.05 | 0.02 | 4669 | 18.86 | 18.88 | 0.01 | 6313 | |
Lake | 211.61 | 211.90 | 0.19 | 1681 | 136.54 | 136.70 | 0.10 | 2609 | 87.99 | 88.08 | 0.05 | 4482 | 56.04 | 56.08 | 0.02 | 8267 | |
Hydr. | 177.83 | 178.00 | 0.08 | 1737 | 105.77 | 105.87 | 0.05 | 2740 | 63.12 | 63.16 | 0.03 | 4543 | 38.08 | 38.10 | 0.01 | 8221 | |
EPSZ | 118.79 | 118.85 | 0.03 | 1786 | 62.69 | 62.73 | 0.03 | 2702 | 38.05 | 38.09 | 0.02 | 4490 | 23.65 | 23.66 | 0.01 | 8152 | |
Mach. | 73.58 | 73.63 | 0.02 | 1730 | 42.90 | 42.94 | 0.02 | 2649 | 25.68 | 25.70 | 0.01 | 4577 | 15.68 | 15.68 | 0.00 | 8100 | |
Text | 35.02 | 35.05 | 0.02 | 1884 | 20.13 | 20.15 | 0.01 | 2871 | 12.61 | 12.61 | 0.00 | 4716 | 8.12 | 8.13 | 0.00 | 8476 | |
Sign | 64.09 | 64.13 | 0.02 | 1692 | 33.46 | 33.49 | 0.02 | 2694 | 18.99 | 19.00 | 0.01 | 4563 | 11.26 | 11.27 | 0.00 | 8315 | |
Bikes | 110.86 | 110.98 | 0.06 | 1760 | 59.64 | 59.72 | 0.04 | 2729 | 32.81 | 32.87 | 0.02 | 4651 | 18.43 | 18.46 | 0.01 | 8297 | |
Sail. | 70.07 | 70.18 | 0.05 | 2777 | 37.99 | 38.05 | 0.03 | 4178 | 20.54 | 20.58 | 0.02 | 7032 | 11.95 | 11.96 | 0.01 | 12,738 | |
Moto. | 215.11 | 215.57 | 0.25 | 2713 | 112.89 | 113.25 | 0.13 | 4236 | 65.44 | 65.56 | 0.05 | 6982 | 38.72 | 38.76 | 0.02 | 12,336 | |
Lady | 112.84 | 112.91 | 0.03 | 2720 | 64.08 | 64.12 | 0.02 | 4190 | 35.43 | 35.47 | 0.02 | 7213 | 19.90 | 19.92 | 0.01 | 12,791 | |
Caps | 165.25 | 165.83 | 0.34 | 2593 | 77.52 | 77.58 | 0.03 | 4175 | 38.75 | 38.80 | 0.02 | 6731 | 21.00 | 21.04 | 0.02 | 12,286 | |
Parr. | 240.57 | 240.82 | 0.14 | 2686 | 130.02 | 130.09 | 0.05 | 4062 | 76.48 | 76.54 | 0.03 | 6852 | 43.71 | 43.76 | 0.02 | 12,230 | |
Girl | 135.25 | 135.34 | 0.03 | 2776 | 74.15 | 74.26 | 0.05 | 3998 | 41.60 | 41.64 | 0.02 | 6864 | 24.11 | 24.13 | 0.01 | 12,428 | |
Land. | 104.49 | 104.62 | 0.07 | 2190 | 56.17 | 56.35 | 0.06 | 3278 | 32.06 | 32.08 | 0.01 | 6214 | 19.51 | 19.52 | 0.01 | 10,082 | |
Head. | 120.48 | 120.58 | 0.07 | 2119 | 69.11 | 69.22 | 0.05 | 3534 | 41.68 | 41.71 | 0.03 | 5678 | 24.84 | 24.86 | 0.01 | 9768 | |
Dess. | 129.01 | 129.24 | 0.13 | 2081 | 68.90 | 68.95 | 0.03 | 3148 | 40.79 | 40.81 | 0.02 | 5165 | 24.08 | 24.09 | 0.01 | 9438 | |
Snow. | 130.06 | 130.17 | 0.05 | 2050 | 65.57 | 65.64 | 0.03 | 3172 | 36.51 | 36.54 | 0.01 | 6137 | 21.40 | 21.44 | 0.02 | 10,092 | |
Cath. | 61.92 | 61.97 | 0.03 | 1696 | 33.11 | 33.19 | 0.05 | 2801 | 19.02 | 19.04 | 0.01 | 4588 | 11.64 | 11.65 | 0.00 | 8332 | |
Beach | 146.48 | 146.55 | 0.03 | 1809 | 76.78 | 76.83 | 0.03 | 2757 | 44.70 | 44.72 | 0.01 | 4608 | 27.33 | 27.34 | 0.01 | 8370 | |
138.94 | 139.10 | 2042 | 78.17 | 78.26 | 3172 | 46.66 | 46.70 | 5377 | 28.42 | 28.44 | 9500 | ||||||
25 | Lenna | 119.78 | 119.82 | 0.02 | 8477 | 73.39 | 73.43 | 0.02 | 12,914 | 46.69 | 46.71 | 0.01 | 22,032 | 30.59 | 30.60 | 0.01 | 40,102 |
Pepp. | 240.01 | 240.14 | 0.07 | 5857 | 139.29 | 139.39 | 0.05 | 12,543 | 86.96 | 87.01 | 0.03 | 21,357 | 55.85 | 55.89 | 0.02 | 38,850 | |
Plane | 66.05 | 66.07 | 0.01 | 8203 | 37.59 | 37.65 | 0.03 | 12,703 | 23.47 | 23.50 | 0.01 | 21,835 | 15.09 | 15.10 | 0.00 | 40,434 | |
Mand. | 385.09 | 385.28 | 0.10 | 8252 | 242.64 | 242.71 | 0.03 | 12,555 | 155.58 | 155.69 | 0.05 | 21,573 | 99.72 | 99.77 | 0.03 | 39,536 | |
Blond | 90.11 | 90.25 | 0.08 | 8349 | 50.10 | 50.13 | 0.02 | 12,539 | 30.56 | 30.59 | 0.02 | 22,143 | 18.58 | 18.59 | 0.01 | 30,048 | |
Lake | 208.50 | 208.61 | 0.08 | 7694 | 134.70 | 134.78 | 0.04 | 12,088 | 86.60 | 86.68 | 0.03 | 21,349 | 55.34 | 55.39 | 0.02 | 39,485 | |
Hydr. | 174.54 | 174.63 | 0.05 | 7911 | 104.51 | 104.59 | 0.03 | 12,774 | 62.24 | 62.27 | 0.03 | 21,496 | 37.64 | 37.66 | 0.01 | 39,517 | |
EPSZ | 117.29 | 117.33 | 0.02 | 8122 | 61.90 | 61.93 | 0.03 | 12,514 | 37.53 | 37.55 | 0.01 | 21,158 | 23.38 | 23.39 | 0.00 | 39,113 | |
Mach. | 72.36 | 72.38 | 0.01 | 7897 | 42.42 | 42.44 | 0.01 | 12,395 | 25.37 | 25.38 | 0.01 | 21,708 | 15.53 | 15.53 | 0.00 | 39,164 | |
Text | 34.53 | 34.56 | 0.02 | 8672 | 19.86 | 19.88 | 0.01 | 13,507 | 12.52 | 12.52 | 0.00 | 22,502 | 8.04 | 8.04 | 0.00 | 40,686 | |
Sign | 63.39 | 63.42 | 0.01 | 7732 | 32.92 | 32.95 | 0.01 | 12,626 | 18.71 | 18.72 | 0.01 | 21,717 | 11.12 | 11.13 | 0.00 | 40,168 | |
Bikes | 109.10 | 109.21 | 0.05 | 8115 | 58.35 | 58.40 | 0.02 | 12,848 | 32.26 | 32.29 | 0.01 | 22,185 | 18.17 | 18.18 | 0.00 | 40,064 | |
Sail. | 69.09 | 69.14 | 0.02 | 12,793 | 36.74 | 36.81 | 0.04 | 19,457 | 20.12 | 20.15 | 0.01 | 33,285 | 11.78 | 11.80 | 0.01 | 61,339 | |
Moto. | 201.29 | 207.41 | 2.76 | 12,518 | 109.68 | 109.93 | 0.10 | 19,678 | 64.03 | 64.18 | 0.07 | 32,776 | 38.11 | 38.13 | 0.01 | 59,193 | |
Lady | 112.05 | 112.09 | 0.03 | 12,468 | 63.15 | 63.18 | 0.02 | 19,600 | 34.73 | 34.77 | 0.02 | 34,047 | 19.66 | 19.67 | 0.01 | 62,269 | |
Caps | 160.26 | 160.37 | 0.05 | 11,914 | 75.44 | 75.56 | 0.07 | 19,856 | 38.01 | 38.04 | 0.01 | 31,596 | 20.56 | 20.59 | 0.02 | 58,835 | |
Parr. | 237.27 | 237.43 | 0.07 | 12,125 | 128.65 | 128.72 | 0.03 | 18,811 | 75.14 | 75.18 | 0.02 | 32,442 | 43.05 | 43.08 | 0.02 | 58,919 | |
Girl | 134.15 | 134.35 | 0.10 | 12,836 | 73.12 | 73.19 | 0.03 | 18,652 | 40.96 | 40.99 | 0.01 | 32,364 | 23.72 | 23.74 | 0.01 | 59,553 | |
Land. | 102.87 | 102.96 | 0.04 | 10,011 | 55.25 | 55.34 | 0.08 | 15,287 | 31.76 | 31.77 | 0.00 | 29,564 | 19.35 | 19.36 | 0.00 | 48,674 | |
Head. | 118.85 | 118.92 | 0.03 | 9813 | 67.76 | 67.87 | 0.05 | 16,498 | 40.95 | 41.00 | 0.03 | 27,162 | 24.43 | 24.45 | 0.01 | 47,113 | |
Dess. | 126.70 | 126.85 | 0.08 | 9828 | 68.21 | 68.24 | 0.02 | 14,644 | 40.28 | 40.31 | 0.02 | 24,605 | 23.73 | 23.75 | 0.01 | 45,409 | |
Snow. | 128.35 | 128.53 | 0.10 | 9314 | 64.44 | 64.59 | 0.06 | 14,783 | 35.89 | 35.92 | 0.01 | 29,336 | 21.00 | 21.05 | 0.02 | 48,568 | |
Cath. | 60.90 | 60.93 | 0.02 | 7760 | 32.63 | 32.66 | 0.02 | 12,950 | 18.74 | 18.76 | 0.01 | 21,844 | 11.52 | 11.53 | 0.00 | 40,269 | |
Beach | 145.11 | 145.16 | 0.02 | 8192 | 75.64 | 75.70 | 0.02 | 12,880 | 44.23 | 44.26 | 0.01 | 22,132 | 27.01 | 27.02 | 0.01 | 40,599 | |
136.57 | 136.91 | 9369 | 77.02 | 77.09 | 14,796 | 45.97 | 46.01 | 25,509 | 28.04 | 28.06 | 45,746 |
32 Colors | 64 Colors | 128 Colors | 256 Colors | |||||
---|---|---|---|---|---|---|---|---|
Lenna | 138.44 | 173 | 82.44 | 219 | 53.04 | 276 | 35.28 | 355 |
Peppers | 311.66 | 165 | 173.75 | 214 | 106.85 | 272 | 68.72 | 344 |
Plane | 83.12 | 130 | 46.22 | 186 | 28.06 | 238 | 18.42 | 320 |
Mandrill | 441.30 | 198 | 286.93 | 236 | 183.51 | 296 | 117.85 | 377 |
Blond | 111.28 | 172 | 63.07 | 215 | 38.46 | 280 | 23.65 | 357 |
Lake | 245.65 | 167 | 162.89 | 213 | 107.00 | 273 | 68.36 | 355 |
Hydrant | 210.09 | 163 | 125.54 | 219 | 76.30 | 269 | 45.79 | 341 |
EPSZ | 132.19 | 170 | 72.67 | 219 | 43.70 | 274 | 27.18 | 353 |
Machine | 86.83 | 175 | 49.03 | 207 | 29.75 | 258 | 18.35 | 315 |
Text | 43.02 | 162 | 23.22 | 208 | 14.21 | 257 | 9.24 | 347 |
Sign | 73.66 | 160 | 39.97 | 197 | 22.86 | 249 | 13.41 | 308 |
Bikes | 130.97 | 167 | 72.82 | 206 | 39.57 | 258 | 21.52 | 342 |
Sailboats | 86.96 | 245 | 47.36 | 282 | 27.39 | 387 | 14.99 | 503 |
Motorcycles | 276.14 | 260 | 151.98 | 335 | 83.79 | 420 | 49.37 | 552 |
Lady | 144.81 | 255 | 79.32 | 310 | 44.57 | 388 | 24.55 | 504 |
Caps | 217.36 | 217 | 112.00 | 275 | 55.43 | 354 | 28.86 | 447 |
Parrots | 315.58 | 234 | 163.83 | 292 | 94.54 | 353 | 54.36 | 466 |
Girl | 151.51 | 238 | 89.28 | 293 | 52.19 | 367 | 30.06 | 488 |
Landscape | 129.18 | 197 | 66.61 | 238 | 36.48 | 316 | 22.18 | 416 |
Headbands | 149.52 | 174 | 84.86 | 225 | 51.30 | 280 | 31.28 | 354 |
Dessert | 152.16 | 182 | 85.29 | 225 | 48.50 | 272 | 29.42 | 364 |
Snowman | 163.63 | 184 | 87.54 | 242 | 46.97 | 296 | 27.48 | 385 |
Cathedrals | 72.42 | 157 | 38.57 | 196 | 22.43 | 241 | 13.29 | 308 |
Beach | 179.49 | 166 | 93.22 | 204 | 52.30 | 251 | 31.89 | 321 |
168.62 | 188 | 95.77 | 236 | 56.63 | 297 | 34.40 | 384 |
32 Colors | 64 Colors | 128 Colors | 256 Colors | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Len. | 137.66 | 157.21 | 21.4 | 1430 | 78.87 | 94.83 | 13.3 | 2294 | 50.29 | 63.45 | 21.9 | 3791 | 32.08 | 49.67 | 29.5 | 6225 |
Pep. | 285.75 | 350.98 | 84.9 | 1529 | 156.80 | 177.57 | 17.0 | 2627 | 94.68 | 118.78 | 32.7 | 4325 | 60.77 | 93.60 | 48.8 | 6873 |
Pla. | 97.59 | 113.06 | 16.1 | 1493 | 45.38 | 62.34 | 15.9 | 2551 | 26.63 | 43.17 | 17.5 | 3997 | 17.10 | 33.28 | 22.2 | 6113 |
Man. | 399.65 | 1885.24 | 3568.3 | 1414 | 259.82 | 1768.84 | 3625.4 | 2333 | 167.66 | 1682.64 | 3667.6 | 3482 | 111.07 | 1638.11 | 3689.5 | 6428 |
Blo. | 94.70 | 127.46 | 32.5 | 1559 | 59.20 | 71.70 | 16.9 | 2641 | 36.79 | 44.59 | 14.2 | 4331 | 21.06 | 36.08 | 20.2 | 6656 |
Lake | 221.71 | 336.26 | 177.8 | 1531 | 152.24 | 165.55 | 11.7 | 2625 | 95.28 | 111.46 | 23.5 | 4362 | 62.13 | 83.26 | 38.1 | 7131 |
Hyd. | 205.22 | 248.33 | 39.4 | 1394 | 115.76 | 162.45 | 42.1 | 2355 | 72.48 | 100.95 | 31.5 | 3772 | 41.45 | 74.20 | 41.6 | 7146 |
EPS. | 146.94 | 183.01 | 37.4 | 1352 | 78.91 | 111.61 | 68.5 | 2186 | 41.55 | 82.30 | 83.0 | 3582 | 25.07 | 69.35 | 90.0 | 6446 |
Mac. | 95.69 | 183.59 | 114.3 | 1371 | 50.70 | 84.59 | 51.1 | 2258 | 30.35 | 60.82 | 61.3 | 3687 | 17.25 | 50.96 | 66.4 | 6284 |
Text | 36.94 | 58.55 | 34.6 | 1380 | 21.43 | 28.37 | 8.8 | 2168 | 13.10 | 20.38 | 10.5 | 3309 | 8.31 | 17.98 | 12.4 | 4836 |
Sign | 89.20 | 119.38 | 26.6 | 1362 | 41.02 | 57.71 | 19.6 | 2270 | 20.89 | 34.82 | 17.1 | 3602 | 12.09 | 27.18 | 21.2 | 6222 |
Bik. | 122.71 | 145.69 | 25.3 | 1382 | 62.12 | 80.35 | 16.4 | 2350 | 36.60 | 48.04 | 15.9 | 3797 | 21.63 | 37.15 | 22.8 | 6476 |
Sai. | 74.26 | 112.89 | 33.5 | 2086 | 41.40 | 56.02 | 18.6 | 3553 | 23.88 | 27.50 | 3.8 | 6361 | 13.92 | 17.54 | 6.3 | 11,043 |
Mot. | 222.81 | 259.69 | 35.9 | 2166 | 126.42 | 147.26 | 14.6 | 3698 | 77.49 | 88.72 | 15.5 | 6342 | 46.17 | 60.67 | 28.7 | 10,633 |
Lady | 135.03 | 166.36 | 24.5 | 2109 | 71.54 | 95.44 | 28.4 | 3650 | 42.10 | 50.83 | 10.6 | 6234 | 23.15 | 32.60 | 11.8 | 10,038 |
Caps | 222.44 | 287.24 | 78.5 | 2030 | 95.39 | 136.72 | 39.6 | 3556 | 50.56 | 72.41 | 31.0 | 6322 | 26.57 | 38.26 | 13.8 | 10,973 |
Par. | 268.19 | 289.43 | 19.6 | 2072 | 153.54 | 185.32 | 20.8 | 3577 | 90.19 | 122.50 | 22.7 | 6053 | 51.67 | 83.35 | 32.7 | 9811 |
Girl | 205.54 | 267.91 | 54.6 | 2025 | 101.25 | 117.45 | 10.7 | 3542 | 52.56 | 67.73 | 10.0 | 6400 | 28.63 | 39.81 | 9.7 | 10,790 |
Lan. | 106.92 | 201.02 | 127.6 | 1370 | 60.34 | 95.30 | 47.5 | 2238 | 35.79 | 62.44 | 50.2 | 3588 | 22.11 | 53.29 | 55.6 | 5877 |
Hea. | 131.38 | 198.37 | 91.5 | 1472 | 81.18 | 112.65 | 32.4 | 2364 | 46.39 | 66.90 | 26.2 | 3910 | 26.61 | 47.25 | 30.7 | 6288 |
Des. | 141.04 | 189.83 | 39.3 | 1396 | 78.02 | 96.35 | 12.9 | 2418 | 49.84 | 61.22 | 15.3 | 3991 | 28.82 | 44.72 | 24.8 | 6647 |
Sno. | 130.51 | 157.43 | 16.7 | 1420 | 65.69 | 94.55 | 21.0 | 2376 | 40.46 | 58.59 | 28.6 | 3987 | 23.67 | 42.45 | 34.9 | 6699 |
Cat. | 74.45 | 148.43 | 109.6 | 1380 | 39.09 | 85.89 | 93.8 | 2291 | 22.34 | 30.99 | 12.2 | 3819 | 13.49 | 23.40 | 16.3 | 6244 |
Bea. | 182.97 | 369.00 | 193.8 | 1396 | 103.02 | 249.67 | 200.2 | 2371 | 54.45 | 122.67 | 110.1 | 3936 | 32.52 | 57.52 | 29.1 | 6604 |
159.55 | 273.18 | 1588 | 89.13 | 180.77 | 2679 | 53.01 | 135.16 | 4458 | 31.97 | 114.65 | 7437 |
32 Colors | 64 Colors | 128 Colors | 256 Colors | |||||
---|---|---|---|---|---|---|---|---|
Lenna | 123.82 | 250 | 75.35 | 362 | 48.10 | 541 | 31.59 | 864 |
Peppers | 272.24 | 241 | 157.17 | 354 | 99.05 | 538 | 59.75 | 847 |
Plane | 88.32 | 203 | 41.63 | 325 | 25.90 | 504 | 17.17 | 821 |
Mandrill | 397.18 | 278 | 248.82 | 378 | 160.71 | 561 | 103.18 | 931 |
Blond | 95.45 | 250 | 70.39 | 359 | 42.70 | 547 | 21.04 | 863 |
Lake | 218.92 | 246 | 140.32 | 354 | 90.70 | 539 | 57.65 | 863 |
Hydrant | 183.95 | 239 | 108.71 | 357 | 64.93 | 533 | 38.96 | 854 |
EPSZ | 120.74 | 248 | 64.55 | 359 | 39.09 | 539 | 24.21 | 861 |
Machine | 76.81 | 250 | 43.96 | 345 | 26.28 | 521 | 16.04 | 819 |
Text | 36.25 | 238 | 20.65 | 347 | 12.84 | 522 | 8.29 | 854 |
Sign | 65.43 | 235 | 34.59 | 333 | 19.53 | 508 | 11.57 | 812 |
Bikes | 113.94 | 243 | 62.53 | 346 | 33.92 | 521 | 18.94 | 854 |
Sailboats | 73.86 | 357 | 39.67 | 491 | 21.58 | 781 | 12.37 | 1251 |
Motorcycles | 224.66 | 374 | 118.62 | 544 | 68.55 | 813 | 40.17 | 1314 |
Lady | 116.20 | 368 | 66.49 | 518 | 36.78 | 794 | 20.57 | 1291 |
Caps | 177.84 | 328 | 82.13 | 483 | 40.95 | 750 | 22.18 | 1198 |
Parrots | 249.72 | 345 | 133.34 | 498 | 79.40 | 757 | 45.27 | 1224 |
Girl | 136.95 | 350 | 77.10 | 498 | 43.26 | 765 | 24.87 | 1265 |
Landscape | 107.72 | 286 | 57.59 | 401 | 32.69 | 621 | 19.87 | 1019 |
Headbands | 124.51 | 260 | 71.23 | 385 | 43.06 | 591 | 25.76 | 945 |
Dessert | 133.40 | 267 | 70.66 | 384 | 41.77 | 588 | 24.83 | 957 |
Snowman | 134.07 | 271 | 68.77 | 403 | 38.09 | 604 | 22.33 | 981 |
Cathedrals | 64.48 | 231 | 34.11 | 334 | 19.69 | 507 | 11.88 | 821 |
Beach | 150.04 | 243 | 79.09 | 344 | 45.78 | 517 | 28.11 | 847 |
145.27 | 275 | 81.98 | 396 | 48.97 | 603 | 29.44 | 973 |
WU | OC | MC | VB | NQ | BSKM | WATCQ | KM | SFLA | ABC+ATCQ | ATCQ+FA | |
---|---|---|---|---|---|---|---|---|---|---|---|
Lenna | 158.61 | 482.03 | 425.85 | 203.07 | 152.13 | 118.65 | 131.41 | 123.48 (4.6) | 119.98 (1.1) | 119.19 (0.5) | 139.13 (1.2) |
Pepp. | 279.27 | 777.14 | 866.55 | 451.10 | 283.69 | 231.82 | 241.08 | 239.02 (7.5) | 232.13 (2.3) | 231.06 (1.3) | 290.13 (4.3) |
Plane | 85.45 | 342.23 | 374.70 | 123.56 | 123.70 | 65.84 | 65.63 | 140.67 (28.8) | 89.52 (7.6) | 68.05 (2.4) | 101.35 (0.5) |
Mand. | 468.39 | 1094.11 | 984.05 | 531.03 | 456.13 | 376.69 | 405.65 | 382.70 (5.2) | 377.53 (2.8) | 377.14 (1.4) | 408.40 (1.7) |
Blond | 107.55 | 477.64 | 374.69 | 232.43 | 123.89 | 83.92 | 90.68 | 89.56 (8.4) | 84.58 (1.9) | 82.16 (0.3) | 96.30 (4.1) |
Lake | 249.81 | 922.04 | 1208.87 | 357.26 | 274.45 | 204.42 | 215.70 | 214.49 (7.7) | 206.89 (2.5) | 204.78 (0.7) | 216.94 (1.4) |
Hydr. | 218.21 | 491.45 | 975.28 | 367.05 | 235.63 | 170.52 | 182.38 | 179.00 (4.3) | 173.76 (2.7) | 171.22 (0.9) | 200.59 (2.2) |
EPSZ | 149.84 | 539.37 | 291.61 | 182.44 | 141.71 | 114.78 | 120.61 | 118.95 (2.6) | 115.55 (1.9) | 115.37 (1.0) | 153.18 (1.0) |
Mach. | 98.40 | 371.64 | 185.28 | 120.22 | 96.94 | 72.73 | 77.37 | 77.92 (4.0) | 74.30 (1.8) | 73.96 (1.0) | 94.38 (1.1) |
Text | 45.51 | 104.38 | 250.51 | 60.96 | 55.06 | 34.48 | 35.96 | 40.64 (3.0) | 36.49 (1.3) | 35.46 (0.4) | 38.62 (0.1) |
Sign | 82.07 | 308.53 | 412.77 | 113.41 | 98.36 | 61.01 | 64.92 | 69.23 (7.2) | 65.06 (3.0) | 62.41 (1.2) | 96.38 (0.9) |
Bikes | 131.08 | 409.62 | 580.27 | 162.72 | 140.32 | 104.31 | 109.89 | 115.49 (4.4) | 107.70 (2.7) | 104.68 (1.3) | 124.01 (1.4) |
Sail. | 85.82 | 477.06 | 320.63 | 139.41 | 118.56 | 68.19 | 70.55 | 88.38 (6.8) | 78.67 (5.3) | 69.01 (1.8) | 76.18 (0.6) |
Moto. | 268.42 | 849.84 | 532.58 | 406.60 | 339.71 | 187.95 | 216.60 | 204.08 (8.0) | 197.09 (3.4) | 190.87 (1.8) | 232.83 (1.5) |
Lady | 148.83 | 412.51 | 317.46 | 417.87 | 160.77 | 111.86 | 124.17 | 120.33 (5.2) | 116.32 (2.6) | 114.45 (1.2) | 141.49 (1.0) |
Caps | 213.01 | 782.08 | 637.58 | 352.56 | 231.86 | 157.95 | 167.25 | 180.56 (10.5) | 171.76 (9.5) | 158.08 (5.1) | 225.76 (1.2) |
Parr. | 298.98 | 853.02 | 862.83 | 357.24 | 297.85 | 236.24 | 249.61 | 253.35 (8.1) | 243.10 (5.4) | 235.00 (2.8) | 269.55 (2.1) |
Girl | 162.03 | 508.41 | 334.74 | 222.09 | 169.25 | 124.93 | 132.37 | 144.11 (9.3) | 132.00 (3.9) | 127.86 (1.5) | 186.57 (5.7) |
Land. | 131.31 | 576.99 | 419.37 | 164.35 | 139.03 | 98.74 | 105.55 | 103.00 (3.3) | 100.33 (1.6) | 98.42 (0.7) | 111.71 (1.4) |
Head. | 142.63 | 430.86 | 1195.51 | 184.82 | 188.99 | 113.88 | 120.37 | 139.68 (9.1) | 121.69 (6.0) | 114.85 (1.2) | 138.24 (0.9) |
Dess. | 160.65 | 426.95 | 451.64 | 191.72 | 176.26 | 123.99 | 130.46 | 132.13 (8.4) | 124.92 (3.4) | 123.12 (1.9) | 144.34 (1.5) |
Snow. | 161.12 | 559.57 | 366.86 | 216.35 | 202.14 | 121.41 | 124.82 | 137.94 (17.0) | 126.51 (9.0) | 118.63 (2.0) | 137.95 (0.7) |
Cath. | 81.90 | 316.46 | 284.29 | 105.84 | 93.72 | 59.24 | 63.25 | 66.76 (4.9) | 62.93 (1.7) | 60.63 (0.8) | 77.27 (0.9) |
Beach | 177.34 | 446.43 | 671.30 | 211.50 | 178.32 | 140.87 | 145.64 | 148.69 (10.2) | 139.23 (2.3) | 138.32 (1.7) | 185.36 (3.9) |
171.09 | 540.02 | 555.22 | 244.82 | 186.60 | 132.68 | 141.33 | 146.26 | 137.42 | 133.11 | 161.94 |
WU | OC | MC | VB | NQ | BSKM | WATCQ | KM | SFLA | ABC+ATCQ | ATCQ+FA | |
---|---|---|---|---|---|---|---|---|---|---|---|
Lenna | 99.16 | 212.92 | 362.61 | 135.86 | 85.60 | 72.34 | 79.13 | 75.81 (2.6) | 73.84 (0.8) | 72.68 (0.4) | 80.56 (1.0) |
Peppers | 165.37 | 495.51 | 771.03 | 304.21 | 166.37 | 136.12 | 142.07 | 144.44 (4.0) | 139.21 (3.0) | 135.31 (1.2) | 160.67 (1.1) |
Plane | 51.33 | 225.98 | 237.97 | 80.73 | 57.57 | 37.41 | 40.59 | 78.30 (22.7) | 52.64 (3.0) | 42.53 (1.0) | 47.69 (0.4) |
Mandrill | 288.33 | 576.19 | 881.29 | 346.58 | 272.25 | 239.58 | 249.00 | 240.61 (2.1) | 238.68 (1.4) | 237.47 (0.4) | 259.32 (2.6) |
Blond | 63.03 | 163.08 | 271.55 | 129.43 | 66.32 | 49.34 | 51.46 | 52.33 (1.0) | 51.15 (0.7) | 49.32 (0.4) | 58.05 (0.8) |
Lake | 161.34 | 466.14 | 984.62 | 251.70 | 164.26 | 131.72 | 139.07 | 137.06 (1.7) | 134.11 (1.8) | 131.58 (0.6) | 154.10 (0.7) |
Hydrant | 131.49 | 280.76 | 801.44 | 236.15 | 127.00 | 102.02 | 109.45 | 108.14 (2.8) | 104.91 (1.4) | 102.12 (0.6) | 116.85 (1.0) |
EPSZ | 85.95 | 280.23 | 232.32 | 113.99 | 72.76 | 61.76 | 66.56 | 65.84 (2.9) | 62.73 (1.0) | 61.59 (0.5) | 82.94 (1.8) |
Machine | 57.81 | 136.94 | 156.20 | 82.35 | 53.35 | 42.65 | 44.80 | 45.67 (1.5) | 43.91 (1.0) | 42.89 (0.6) | 52.10 (1.0) |
Text | 27.26 | 72.16 | 165.16 | 42.87 | 28.58 | 20.48 | 21.17 | 24.02 (1.6) | 21.58 (0.6) | 20.68 (0.4) | 22.87 (0.2) |
Sign | 45.21 | 121.85 | 273.21 | 62.61 | 52.50 | 33.15 | 35.39 | 37.87 (2.1) | 34.65 (1.0) | 33.04 (0.3) | 42.56 (0.9) |
Bikes | 77.65 | 193.87 | 429.39 | 103.25 | 75.52 | 56.53 | 59.87 | 64.60 (2.3) | 61.21 (2.0) | 57.75 (0.4) | 64.30 (0.6) |
Sailb. | 50.30 | 144.83 | 200.83 | 71.01 | 59.26 | 36.57 | 36.65 | 49.34 (3.8) | 48.90 (3.1) | 36.75 (0.7) | 43.77 (1.1) |
Motor. | 147.10 | 351.29 | 398.09 | 216.75 | 140.49 | 107.09 | 115.86 | 118.23 (5.4) | 114.34 (3.0) | 108.60 (0.8) | 131.05 (1.0) |
Lady | 82.36 | 333.21 | 231.33 | 315.04 | 81.23 | 62.42 | 64.84 | 67.02 (3.0) | 66.95 (1.7) | 61.18 (0.6) | 72.15 (1.0) |
Caps | 102.70 | 323.01 | 431.91 | 163.94 | 93.91 | 73.63 | 79.62 | 94.48 (8.4) | 93.74 (6.9) | 77.86 (2.1) | 99.69 (1.9) |
Parrots | 167.24 | 364.27 | 609.94 | 217.62 | 156.24 | 128.15 | 136.67 | 138.16 (6.1) | 133.91 (2.7) | 127.66 (1.0) | 143.51 (3.0) |
Girl | 93.38 | 328.70 | 258.61 | 119.52 | 93.44 | 71.68 | 76.69 | 82.18 (3.8) | 78.05 (3.2) | 71.99 (0.6) | 102.75 (1.1) |
Lands. | 72.20 | 185.19 | 352.09 | 113.61 | 70.13 | 54.56 | 58.21 | 58.69 (2.1) | 56.43 (1.0) | 54.10 (0.3) | 62.75 (0.7) |
Headb. | 87.52 | 192.74 | 878.94 | 121.28 | 99.49 | 66.24 | 70.63 | 83.25 (4.9) | 76.88 (3.6) | 68.03 (0.7) | 86.48 (0.5) |
Dessert | 90.42 | 203.65 | 311.91 | 118.69 | 90.70 | 67.40 | 71.30 | 75.90 (4.0) | 70.10 (1.9) | 68.45 (0.7) | 82.38 (0.9) |
Snowm. | 89.53 | 334.53 | 305.82 | 118.13 | 90.05 | 62.12 | 66.87 | 72.57 (3.4) | 67.47 (2.3) | 62.30 (1.1) | 66.96 (0.3) |
Cathe. | 45.28 | 109.02 | 169.33 | 61.50 | 48.67 | 32.89 | 34.33 | 36.43 (1.8) | 35.72 (1.7) | 32.55 (0.4) | 41.55 (0.3) |
Beach | 101.92 | 309.23 | 557.04 | 123.49 | 91.86 | 74.08 | 81.68 | 79.90 (3.2) | 76.28 (1.8) | 74.63 (0.6) | 99.81 (1.8) |
99.33 | 266.89 | 428.03 | 152.10 | 97.40 | 75.83 | 80.50 | 84.62 | 80.72 | 76.29 | 90.62 |
WU | OC | MC | VB | NQ | BSKM | WATCQ | KM | SFLA | ABC+ATCQ | ATCQ+FA | |
---|---|---|---|---|---|---|---|---|---|---|---|
Lenna | 61.79 | 140.53 | 276.33 | 94.68 | 53.73 | 46.80 | 49.54 | 48.52 (0.8) | 47.83 (0.4) | 46.41 (0.1) | 50.98 (0.5) |
Peppers | 102.31 | 308.76 | 585.41 | 212.68 | 95.69 | 84.56 | 88.64 | 87.06 (2.9) | 86.92 (1.8) | 83.76 (0.3) | 98.31 (0.6) |
Plane | 32.60 | 133.59 | 187.93 | 52.60 | 29.71 | 23.82 | 25.20 | 42.00 (11.6) | 33.99 (1.6) | 28.59 (0.6) | 27.90 (0.2) |
Mandrill | 186.33 | 357.13 | 776.65 | 248.02 | 168.22 | 151.75 | 162.45 | 154.46 (1.1) | 154.53 (0.8) | 152.54 (0.2) | 167.23 (2.2) |
Blond | 36.84 | 89.86 | 185.81 | 82.22 | 38.30 | 30.32 | 31.17 | 33.24 (0.8) | 33.23 (0.7) | 30.74 (0.7) | 37.26 (1.0) |
Lake | 102.55 | 198.49 | 692.56 | 170.97 | 100.88 | 84.77 | 88.50 | 90.78 (1.0) | 89.54 (0.9) | 85.31 (0.4) | 100.02 (1.3) |
Hydrant | 79.91 | 208.59 | 643.83 | 175.19 | 74.10 | 61.20 | 65.92 | 66.14 (1.7) | 65.38 (1.3) | 61.07 (0.3) | 72.75 (0.5) |
EPSZ | 52.04 | 124.29 | 179.43 | 78.97 | 43.26 | 37.33 | 40.12 | 39.10 (0.8) | 38.28 (0.5) | 36.98 (0.2) | 42.74 (0.4) |
Machine | 35.59 | 85.40 | 128.24 | 60.15 | 30.63 | 25.54 | 27.37 | 27.79 (0.7) | 26.92 (0.4) | 25.47 (0.2) | 32.05 (0.6) |
Text | 18.76 | 40.46 | 105.83 | 33.12 | 15.95 | 13.24 | 13.49 | 15.03 (0.6) | 14.11 (0.5) | 13.14 (0.1) | 14.09 (0.1) |
Sign | 26.98 | 57.33 | 168.87 | 38.48 | 26.16 | 18.86 | 20.09 | 22.35 (1.0) | 21.26 (0.7) | 18.91 (0.2) | 22.04 (0.2) |
Bikes | 44.62 | 129.45 | 331.58 | 65.29 | 39.23 | 31.66 | 33.83 | 37.13 (1.1) | 36.55 (1.2) | 32.26 (0.4) | 37.91 (0.4) |
Sailb. | 29.23 | 118.13 | 176.83 | 44.09 | 28.26 | 20.20 | 21.27 | 28.20 (1.7) | 30.23 (1.2) | 20.64 (0.3) | 25.57 (0.2) |
Motor. | 86.71 | 230.56 | 299.41 | 119.36 | 79.60 | 62.84 | 68.14 | 71.87 (2.0) | 71.26 (1.8) | 62.78 (0.7) | 80.70 (0.8) |
Lady | 46.69 | 126.93 | 168.37 | 189.51 | 41.66 | 34.21 | 36.28 | 37.78 (1.0) | 38.64 (1.0) | 33.91 (0.3) | 43.05 (0.7) |
Caps | 51.90 | 171.52 | 305.15 | 75.92 | 49.04 | 37.22 | 40.00 | 51.30 (3.1) | 52.72 (2.4) | 39.00 (0.7) | 54.15 (0.8) |
Parrots | 95.39 | 253.69 | 441.59 | 143.31 | 86.03 | 72.74 | 77.44 | 79.53 (3.5) | 78.72 (1.5) | 72.78 (0.6) | 86.42 (1.3) |
Girl | 54.95 | 169.86 | 200.69 | 80.14 | 51.39 | 40.86 | 43.62 | 50.67 (2.4) | 49.01 (1.3) | 40.46 (0.5) | 55.13 (0.6) |
Lands. | 42.75 | 149.46 | 257.61 | 84.46 | 37.17 | 32.06 | 33.37 | 35.19 (1.5) | 34.56 (0.8) | 31.30 (0.3) | 37.27 (0.3) |
Headb. | 53.42 | 128.22 | 519.00 | 79.90 | 52.12 | 39.88 | 43.05 | 51.82 (2.7) | 49.26 (1.8) | 40.54 (0.3) | 48.75 (0.3) |
Dessert | 52.66 | 118.32 | 233.09 | 82.38 | 51.09 | 39.82 | 42.51 | 44.60 (1.7) | 43.36 (1.0) | 40.24 (0.5) | 52.36 (1.0) |
Snowm. | 49.69 | 134.31 | 212.60 | 70.03 | 44.23 | 35.69 | 37.75 | 41.95 (1.3) | 41.45 (1.3) | 35.27 (0.5) | 42.25 (0.3) |
Cathe. | 27.31 | 69.79 | 142.12 | 40.15 | 24.33 | 19.21 | 20.31 | 22.05 (0.8) | 21.29 (0.5) | 18.74 (0.2) | 23.99 (0.7) |
Beach | 59.64 | 134.36 | 446.84 | 81.50 | 52.71 | 44.15 | 47.07 | 48.07 (1.5) | 46.82 (1.0) | 44.59 (0.6) | 55.23 (0.6) |
59.61 | 153.29 | 319.41 | 100.13 | 54.73 | 45.36 | 48.21 | 51.11 | 50.24 | 45.64 | 54.51 |
WU | OC | MC | VB | NQ | BSKM | WATCQ | KM | SFLA | ABC+ATCQ | ATCQ+FA | |
---|---|---|---|---|---|---|---|---|---|---|---|
Lenna | 39.53 | 74.12 | 193.25 | 69.41 | 34.88 | 30.79 | 32.16 | 31.96 (0.4) | 31.91 (0.3) | 30.32 (0.1) | 33.39 (0.2) |
Peppers | 66.08 | 156.24 | 397.29 | 147.18 | 63.08 | 54.79 | 56.90 | 56.77 (2.2) | 57.03 (0.5) | 53.95 (0.1) | 63.18 (0.7) |
Plane | 21.66 | 52.31 | 147.53 | 36.85 | 21.09 | 15.50 | 15.93 | 23.72 (1.2) | 23.53 (1.1) | 19.55 (0.4) | 18.12 (0.1) |
Mandrill | 118.65 | 195.82 | 676.87 | 181.94 | 109.34 | 97.52 | 102.82 | 99.08 (0.6) | 100.40 (0.6) | 97.70 (0.1) | 108.13 (0.4) |
Blond | 23.59 | 50.79 | 123.57 | 54.42 | 23.86 | 18.87 | 19.89 | 22.08 (0.7) | 21.76 (0.9) | 19.19 (0.7) | 22.11 (0.2) |
Lake | 66.47 | 159.21 | 523.09 | 120.10 | 65.70 | 54.63 | 57.26 | 60.38 (1.5) | 60.20 (0.9) | 54.94 (0.2) | 63.48 (0.4) |
Hydrant | 48.62 | 120.00 | 459.48 | 118.85 | 45.88 | 37.51 | 39.94 | 41.57 (0.7) | 41.81 (0.6) | 37.34 (0.2) | 43.19 (0.4) |
EPSZ | 32.00 | 55.06 | 134.55 | 57.37 | 27.45 | 23.72 | 24.96 | 24.94 (0.4) | 24.73 (0.3) | 23.37 (0.1) | 26.87 (0.4) |
Machine | 22.02 | 49.07 | 96.87 | 41.62 | 19.73 | 16.08 | 16.67 | 17.31 (0.2) | 17.12 (0.2) | 15.65 (0.1) | 18.68 (0.2) |
Text | 14.05 | 27.43 | 73.00 | 26.48 | 10.06 | 8.76 | 9.00 | 10.01 (0.3) | 9.38 (0.2) | 8.57 (0.1) | 9.01 (0.0) |
Sign | 17.23 | 42.01 | 94.21 | 25.79 | 14.43 | 11.78 | 12.02 | 13.70 (0.4) | 13.51 (0.3) | 11.41 (0.1) | 13.23 (0.1) |
Bikes | 26.12 | 77.85 | 243.34 | 41.30 | 23.65 | 18.60 | 19.34 | 22.39 (0.5) | 23.02 (0.6) | 18.73 (0.2) | 22.42 (0.7) |
Sailb. | 18.89 | 41.05 | 126.59 | 27.62 | 18.00 | 12.63 | 13.00 | 18.06 (0.9) | 20.58 (0.8) | 12.41 (0.1) | 14.94 (0.1) |
Motor. | 51.14 | 126.16 | 228.45 | 73.01 | 46.93 | 37.86 | 39.81 | 44.41 (1.2) | 46.08 (1.5) | 37.18 (0.1) | 49.22 (0.5) |
Lady | 27.34 | 78.17 | 121.81 | 90.16 | 23.27 | 19.95 | 20.64 | 22.04 (0.4) | 24.01 (0.7) | 19.00 (0.1) | 24.03 (0.4) |
Caps | 29.68 | 70.45 | 212.22 | 43.02 | 27.73 | 20.95 | 21.77 | 30.10 (1.4) | 32.34 (1.6) | 21.52 (0.4) | 27.76 (0.7) |
Parrots | 58.43 | 123.65 | 311.14 | 98.34 | 50.41 | 42.55 | 46.21 | 47.77 (1.4) | 48.17 (1.4) | 42.16 (0.2) | 53.20 (1.1) |
Girl | 32.96 | 109.06 | 159.37 | 53.84 | 30.80 | 23.85 | 25.29 | 30.97 (0.9) | 31.36 (1.0) | 23.55 (0.2) | 30.61 (0.6) |
Lands. | 25.75 | 53.17 | 185.22 | 61.90 | 23.75 | 19.88 | 20.40 | 22.47 (0.7) | 22.74 (0.4) | 19.18 (0.1) | 23.24 (0.2) |
Headb. | 33.83 | 53.17 | 314.55 | 53.29 | 30.77 | 24.74 | 26.17 | 33.09 (1.8) | 32.90 (0.6) | 25.75 (0.2) | 28.25 (0.1) |
Dessert | 32.71 | 67.32 | 172.45 | 56.92 | 30.21 | 23.92 | 25.36 | 27.43 (0.9) | 27.09 (0.6) | 23.86 (0.2) | 30.45 (1.0) |
Snowm. | 29.85 | 84.45 | 165.97 | 43.68 | 27.51 | 21.36 | 22.34 | 25.63 (0.6) | 25.86 (0.7) | 21.15 (0.1) | 25.62 (0.3) |
Cathe. | 18.10 | 45.83 | 99.17 | 26.16 | 15.28 | 12.21 | 12.64 | 13.98 (0.2) | 14.19 (0.4) | 11.74 (0.1) | 14.71 (0.3) |
Beach | 36.33 | 81.77 | 292.27 | 52.92 | 32.95 | 27.21 | 28.47 | 30.22 (0.6) | 29.66 (0.7) | 27.50 (0.3) | 33.63 (0.4) |
37.13 | 83.09 | 231.34 | 66.76 | 34.03 | 28.15 | 29.54 | 32.09 | 32.47 | 28.16 | 33.23 |
References
- An, N.Y.; Pun, C.M. Color image segmentation using adaptive color quantization and multiresolution texture characterization. Signal Image Video Process. 2014, 8, 943–954. [Google Scholar] [CrossRef]
- Deng, Y.; Manjunath, B. Unsupervised segmentation of color-texture regions in images and video. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 800–810. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.D.; Lee, G. Color image segmentation using tensor voting based color clustering. Pattern Recognit. Lett. 2012, 33, 605–614. [Google Scholar] [CrossRef]
- Phung, S.L.; Bouzerdoum, A.; Chai, D. Skin segmentation using color pixel classification: Analysis and comparison. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 148–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.; Au, O.C.; Zou, R.; Yu, W.; Tian, J. An adaptive unsupervised approach toward pixel clustering and color image segmentation. Pattern Recognit. 2010, 43, 1889–1906. [Google Scholar] [CrossRef]
- Jeong, S.; Won, C.S.; Gray, R.M. Image retrieval using color histograms generated by Gauss mixture vector quantization. Comput. Vis. Image Underst. 2004, 94, 44–66. [Google Scholar] [CrossRef]
- Liu, G.H.; Yang, J.Y. Content-based image retrieval using color difference histogram. Pattern Recognit. 2013, 46, 188–198. [Google Scholar] [CrossRef]
- Singha, M.; Hemachandran, K. Content based image retrieval using color and texture. Signal Image Process. 2012, 3, 39. [Google Scholar] [CrossRef]
- Losson, O.; Macaire, L. CFA local binary patterns for fast illuminant-invariant color texture classification. J. Real-Time Image Process. 2015, 10, 387–401. [Google Scholar] [CrossRef]
- Ponti, M.; Nazaré, T.S.; Thumé, G.S. Image quantization as a dimensionality reduction procedure in color and texture feature extraction. Neurocomputing 2016, 173, 385–396. [Google Scholar] [CrossRef]
- Sertel, O.; Kong, J.; Lozanski, G.; Shana’ah, A.; Catalyurek, U.; Saltz, J.; Gurcan, M. Texture classification using nonlinear color quantization: Application to histopathological image analysis. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2008), Las Vegas, NV, USA, 31 March–4 April 2008; pp. 597–600. [Google Scholar]
- Kuo, C.T.; Cheng, S.C. Fusion of color edge detection and color quantization for color image watermarking using principal axes analysis. Pattern Recognit. 2007, 40, 3691–3704. [Google Scholar] [CrossRef]
- Tsai, P.; Hu, Y.C.; Chang, C.C. A color image watermarking scheme based on color quantization. Signal Process. 2004, 84, 95–106. [Google Scholar] [CrossRef]
- Hance, G.; Umbaugh, S.; Moss, R.; Stoecker, W. Unsupervised color image segmentation: With application to skin tumor borders. IEEE Eng. Med. Biol. Mag. 1996, 15, 104–111. [Google Scholar] [CrossRef]
- Maitra, I.; Nag, S.; Bandyopadhyay, S. Accurate breast contour detection algorithms in digital mammogram. Int. J. Comput. Appl. 2011, 25, 1–13. [Google Scholar] [CrossRef]
- Stanley, R.; Moss, R.; Van Stoecker, W.; Aggarwal, C. A fuzzy-based histogram analysis technique for skin lesion discrimination in dermatology clinical images. Comput. Med. Imaging Graph. 2003, 27, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.J.; Archibald, J.; Xiong, G. Rapid color grading for fruit quality evaluation using direct color mapping. IEEE Trans. Autom. Sci. Eng. 2010, 8, 292–302. [Google Scholar] [CrossRef]
- Lee, D.J.; Chang, Y.; Archibald, J.; Greco, C. Color quantization and image analysis for automated fruit quality evaluation. In Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE 2008), Arlington, VA, USA, 23–26 August 2008; pp. 194–199. [Google Scholar] [CrossRef]
- Abate, A.; Frucci, M.; Galdi, C.; Riccio, D. BIRD: Watershed based iris detection for mobile devices. Pattern Recognit. Lett. 2015, 57, 43–51. [Google Scholar] [CrossRef]
- D’Angelo, A.; Dugelay, J.L. People re-identification in camera networks based on probabilistic color histograms. In Proceedings of the Visual Information Processing and Communication II. International Society for Optics and Photonics, San Francisco, CA, USA, 23–27 January 2011; Volume 7882, pp. 1–12. [Google Scholar] [CrossRef]
- Cheon, Y.; Lee, C. License plate extraction for moving vehicles. In Proceedings of the 10th International Conference on Information, Intelligence, Systems and Applications (IISA), Patras, Greece, 15–17 July 2019; pp. 1–6. [Google Scholar]
- Moon, H.M.; Pan, S. A new human identification method for intelligent video surveillance system. In Proceedings of the 2010 19th International Conference on Computer Communications and Networks, Zurich, Switzerland, 2–5 August 2010; pp. 1–6. [Google Scholar]
- Garey, M.; Johnson, D.; Witsenhausen, H. The complexity of the generalized Lloyd-max problem (corresp). IEEE Trans. Inf. Theory 1982, 28, 255–256. [Google Scholar] [CrossRef]
- Heckbert, P. Color Image Quantization for Frame Buffer Display. In Proceedings of the 9th Annual Conference on Computer Graphics and Interactive Techniques, Boston, MA, USA, 26–30 July 1982; ACM: New York, NY, USA, 1982; pp. 297–307. [Google Scholar] [CrossRef] [Green Version]
- Wan, S.; Prusinkiewicz, P.; Wong, S. Variance-based color image quantization for frame buffer display. Color Res. Appl. 1990, 15, 52–58. [Google Scholar] [CrossRef]
- Wu, X. Efficient Statistical Computations for Optimal Color Quantization. In Graphics Gems II; Arvo, J., Ed.; Academic Press: San Diego, CA, USA, 1991; pp. 126–133. [Google Scholar] [CrossRef]
- Orchard, M.; Bouman, C. Color quantization of images. IEEE Trans. Signal Process. 1991, 39, 2677–2690. [Google Scholar] [CrossRef]
- Gervautz, M.; Purgathofer, W. A Simple Method for Color Quantization: Octree Quantization. In Graphics Gems; Glassner, A.S., Ed.; Academic Press Professional, Inc.: San Diego, CA, USA, 1990; pp. 287–293. [Google Scholar] [CrossRef]
- Celebi, M. Improving the performance of k-means for color quantization. Image Vis. Comput. 2011, 29, 260–271. [Google Scholar] [CrossRef] [Green Version]
- Kasuga, H.; Yamamoto, H.; Okamoto, M. Color quantization using the fast K-means algorithm. Syst. Comput. Jpn. 2000, 31, 33–40. [Google Scholar] [CrossRef]
- Verevka, O.; Buchanan, J. The Local K-Means Algorithm for Colour Image Quantization. In Proceedings of the Graphics Interface 95, Quebec, QC, Canada, 17–19 May 1995; pp. 128–135. [Google Scholar] [CrossRef]
- Wen, Q.; Celebi, M. Hard versus fuzzy c-means clustering for color quantization. EURASIP J. Adv. Signal Process. 2011, 2011, 118. [Google Scholar] [CrossRef] [Green Version]
- Dekker, A. Kohonen neural networks for optimal colour quantization. Netw. Comput. Neural Syst. 1994, 5, 351–367. [Google Scholar] [CrossRef]
- Atsalakis, A.; Papamarkos, N. Color reduction and estimation of the number of dominant colors by using a self-growing and self-organized neural gas. Eng. Appl. Artif. Intell. 2006, 19, 769–786. [Google Scholar] [CrossRef]
- Chang, C.H.; Xu, P.; Xiao, R.; Srikanthan, T. New adaptive color quantization method based on self-organizing maps. IEEE Trans. Neural Netw. 2005, 16, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Palomo, E.; Domínguez, E. Hierarchical color quantization based on self-organization. J. Math. Imaging Vis. 2014, 49, 1–19. [Google Scholar] [CrossRef]
- Omran, M.; Engelbrecht, A.; Salman, A. A color image quantization algorithm based on particle swarm optimization. Informatica (Slovenia) 2005, 29, 261–270. [Google Scholar]
- Pérez-Delgado, M.L. Color quantization with Particle swarm optimization and artificial ants. Soft Comput. 2020, 24, 4545–4573. [Google Scholar] [CrossRef]
- Pérez-Delgado, M.L. Colour quantization with Ant-Tree. Appl. Soft Comput. 2015, 36, 656–669. [Google Scholar] [CrossRef]
- Pérez-Delgado, M.L. An iterative method to improve the results of Ant-tree algorithm applied to colour quantisation. Int. J. Bio-Inspir. Comput. 2018, 12, 87–114. [Google Scholar] [CrossRef]
- Ozturk, C.; Hancer, E.; Karaboga, D. Color image quantization: A short review and an application with artificial bee colony algorithm. Informatica 2014, 25, 485–503. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Delgado, M.L. The color quantization problem solved by swarm-based operations. Appl. Intell. 2019, 49, 2482–2514. [Google Scholar] [CrossRef]
- Pérez-Delgado, M.L. Artificial ants and fireflies can perform colour quantisation. Appl. Soft Comput. 2018, 73, 153–177. [Google Scholar] [CrossRef]
- Pérez-Delgado, M.L. Color image quantization using the shuffled-frog leaping algorithm. Eng. Appl. Artif. Intell. 2019, 79, 142–158. [Google Scholar] [CrossRef]
- Pérez-Delgado, M.L. Recent Applications of Swarm-Based Algorithms to Color Quantization. In Recent Advances on Memetic Algorithms and Its Applications in Image Processing; Springer: Singapore, 2020; pp. 93–118. [Google Scholar]
- Pérez-Delgado, M.L.; Román Gallego, J.Á. A two-stage method to improve the quality of quantized images. J. Real-Time Image Proc. 2018, 17, 581–605. [Google Scholar] [CrossRef]
- Brun, L.; Trémeau, A. Digital Color Imaging Handbook. Color Quantization; CRC Press: Boca Raton, FL, USA, 2003; pp. 589–638. [Google Scholar]
- Franzen, R. Kodak Lossless True Color Image Suite. 2017. Available online: http://r0k.us/graphics/kodak/ (accessed on 21 June 2012).
- Pérez-Delgado, M.L. Images for Color Quantization. 2017. Available online: http://audax.zam.usal.es/web/mlperez/cq.htm (accessed on 21 June 2020).
- Pérez-Delgado, M.L. Campus Viriato Images. 2018. Available online: http://audax.zam.usal.es/web/mlperez/fotos_campus.html (accessed on 21 June 2020).
- Weber, A. USC-SIPI Image Database. 2020. Available online: http://sipi.usc.edu/database/database.php/ (accessed on 21 June 2020).
- Pérez-Delgado, M.L.; Román Gallego, J.Á. A hybrid color quantization algorithm that combines the Greedy orthogonal bi-partitioning method with artificial ants. IEEE Access 2019, 7, 128714–128734. [Google Scholar] [CrossRef]
- Corder, G.; Foreman, D. Comparing two related samples: The Wilcoxon signed ranks test. In Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach; Wiley Online Library: Hoboken, NJ, USA, 2009; pp. 38–56. [Google Scholar]
MSE | Execution Time | ||||||
---|---|---|---|---|---|---|---|
Method | Z-Value | Z-Value | |||||
WU | −8.5072 | 0 | 4656 | −8.5072 | 4656 | 0 | |
OC | −8.5072 | 0 | 4656 | −8.5072 | 4656 | 0 | |
VB | −8.5072 | 0 | 4656 | −8.5072 | 4656 | 0 | |
MC | −8.5072 | 0 | 4656 | −8.5072 | 4656 | 0 | |
NQ | −8.5072 | 0 | 4656 | −8.2496 | 4585.5 | 70.5 | |
BS | −8.5072 | 0 | 4656 | −8.5072 | 4656 | 0 | |
WATCQ | −5.4486 | 837 | 3819 | −8.5072 | 4656 | 0 | |
BS+ATCQ | −8.5072 | 0 | 4656 | −8.5072 | 4656 | 0 | |
ITATCQ | −8.5072 | 0 | 4656 | −8.5072 | 4656 | 0 | |
SFLA | −5.3172 | 847.5 | 3712.5 | −7.7252 | 214 | 4442 | |
ATCQ+FA | −8.5072 | 0 | 4656 | −8.5072 | 0 | 4656 | |
KM | −7.7946 | 195 | 4461 | −8.5072 | 0 | 4656 | |
BSKM | −6.1648 | 4015 | 641 | −8.5072 | 0 | 4656 | |
ABC+ATCQ | −4.7122 | 3549.5 | 1010.5 | −8.5072 | 0 | 4656 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Delgado, M.-L. A Mixed Method with Effective Color Reduction. Appl. Sci. 2020, 10, 7819. https://doi.org/10.3390/app10217819
Pérez-Delgado M-L. A Mixed Method with Effective Color Reduction. Applied Sciences. 2020; 10(21):7819. https://doi.org/10.3390/app10217819
Chicago/Turabian StylePérez-Delgado, María-Luisa. 2020. "A Mixed Method with Effective Color Reduction" Applied Sciences 10, no. 21: 7819. https://doi.org/10.3390/app10217819
APA StylePérez-Delgado, M.-L. (2020). A Mixed Method with Effective Color Reduction. Applied Sciences, 10(21), 7819. https://doi.org/10.3390/app10217819