The Effect of Heat Sink Properties on Solar Cell Cooling Systems
Abstract
:1. Introduction
2. Literature Review
2.1. Active Cooling System
2.2. Passive Cooling System
3. Brief Algorithm
3.1. Steady Flow
3.2. Incompressible Flow
3.3. The Continuity Equation
3.4. Navier–Stokes Equation
4. Methods
4.1. Solar Cell
4.2. Cooling System
4.3. Experimental Setup
5. Tendency of Heat Sink Properties
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Voc | Open circuit voltage (V) | Greek symbols | |
Isc | Short circuit current (A) | εfin | Fin effectiveness (%) |
V | Voltage (V) | η | Efficiency (%) |
I | Current (A) | Density (Kg/m3) | |
PMPP | Maximum power point (Wp) | ||
w | Wide (m) | ||
L | Length (m) | ||
t | Thick (m) | ||
Plight | Solar radiation power (W) | ||
Irad | Sunlight intensity (W/m2) | ||
Q | Calorie (Cal) | ||
T | Temperature (°C) | ||
FF | Fill factor |
References
- Kholiq, I. Pemanfaatan energi alternatif sebagai energi terbarukan untuk mendukung subtitusi bbm. J. IPTEK 2015, 19, 75–91. [Google Scholar]
- Kibria, M.T.; Ahammed, A.; Sony, S.M.; Hossain, F. A Review: Comparative studies on different generation solar cells technology. In Proceedings of the 5th International Conference on Environmental Aspects of Bangladesh, Dhaka, Bangladesh, 5–6 September 2014; pp. 51–53. [Google Scholar]
- Wang, X.; Barnett, A. The Evolving Value of Photovoltaic Module Efficiency. Appl. Sci. 2019, 9, 1227. [Google Scholar] [CrossRef] [Green Version]
- Parida, B.; Iniyan, S.; Goic, R. A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2011, 15, 1625–1636. [Google Scholar] [CrossRef]
- Teo, H.; Lee, P.; Hawlader, M. An active cooling system for photovoltaic modules. Appl. Energy 2012, 90, 309–315. [Google Scholar] [CrossRef]
- Houssamo, I.; Locment, F.; Sechilariu, M. Maximum power tracking for photovoltaic power system: Development and experimental comparison of two algorithms. Renew. Energy 2010, 35, 2381–2387. [Google Scholar] [CrossRef]
- Sara, I.D.; Sari, L.H. Pengaruh Heatsink Terhadap Kinerja Modul Surya. Jurnal Nasional Komputasi dan Teknologi Informasi 2019, 2, 13–18. [Google Scholar] [CrossRef]
- Zsiborács, H.; Baranyai, N.H.; Vincze, A.; Háber, I.; Weihs, P.; Oswald, S.; Gützer, C.; Pintér, G. Changes of Photovoltaic Performance as a Function of Positioning Relative to the Focus Points of a Concentrator PV Module: Case Study. Appl. Sci. 2019, 9, 3392. [Google Scholar] [CrossRef] [Green Version]
- Reddy, S.R.; Ebadian, M.A.; Lin, C.-X. A review of PV–T systems: Thermal management and efficiency with single phase cooling. Int. J. Heat Mass Transf. 2015, 91, 861–871. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Malek, A.; Islam, M.; Pandey, A.; Rahim, N. Global advancement of cooling technologies for PV systems: A review. Sol. Energy 2016, 137, 25–45. [Google Scholar] [CrossRef]
- Gotmare, J.A.; Borkar, D.S.; Hatwar, P.R. Experimental Investigation of Pv Panel with Fin Cooling under Natural Convection. Int. J. Adv. Technol. Eng. Sci. 2015, 3, 447–454. [Google Scholar]
- Harsanto, A.B. Simulasi CFD Perpindahan Panas Pada Heatsink Mikroprosesor. Agritek 2011, 12, 1–5. [Google Scholar]
- Mulyanto, A. Perbandingan Konduktivitastembaga, Baja Dan Aluminium. Dinamika Teknik Mesin 2011, 1, 2–4. [Google Scholar] [CrossRef] [Green Version]
- Jassem, R.R. Effect the Form of Perforation on the Heat Transfer in the Perforated Fins. Acad. Res. Int. 2013, 4, 198–207. [Google Scholar]
- Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; Dewitt, D.P. Fundamentals of Heat and Mass Transfer; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Cengel, Y.A. Heat Transfer: A Practical Approach, 2nd ed; Mc Graw Hill: Boston, MA, USA, 2003. [Google Scholar]
- Singh, P.; Ravindra, N. Temperature dependence of solar cell performance—An analysis. Sol. Energy Mater. Sol. Cells 2012, 101, 36–45. [Google Scholar] [CrossRef]
- Karki, I.B. Effect of Temperature on the I-V Characteristics of a Polycrystalline Solar Cell. J. Nepal Phys. Soc. 2016, 3, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Chen, X.; Li, S.; Ding, H. Comparative study on the performance improvement of photovoltaic panel with passive cooling under natural ventilation. Int. J. Smart Grid Clean Energy 2014, 374–379. [Google Scholar] [CrossRef] [Green Version]
- Riupassa, H.; Girik, W. Analisis Konveksi Alami Dan Paksa Dengan Variasi Material. Jurnal Teknik Mesin 2019, 8, 39–48. [Google Scholar]
- Arifin, Z.; Suyitno, S.; Hadi, S.; Sutanto, B. Improved Performance of Dye-Sensitized Solar Cells with TiO2 Nanoparticles/Zn-Doped TiO2 Hollow Fiber Photoanodes. Energies 2018, 11, 2922. [Google Scholar] [CrossRef] [Green Version]
- Kung, C.-Y.; Yang, C.-H.; Huang, C.-W.; Lien, S.-Y.; Zhu, W.-Z.; Lin, H.-J.; Zhang, X. Performance Improvement of High Efficiency Mono-Crystalline Silicon Solar Cells by Modifying Rear-Side Morphology. Appl. Sci. 2017, 7, 410. [Google Scholar] [CrossRef] [Green Version]
- Fahendri, F. Analisa Numerik Distribusi Panas Tak Tuntas Pada Heatsink Menggunakan Metoda Finite Different. Pillar Phys. 2014, 2, 81–88. [Google Scholar]
- Yusuf, A. Aerodynamic Analysis and Smart Ev Third Generation Car Optimization Using Three Dimensional CFD Modeling; Universitas Sebelas Maret: Surakarta, Indonesia, 2017. [Google Scholar]
- Appelbaum, J.; Maor, T. Dependence of PV Module Temperature on Incident Time-Dependent Solar Spectrum. Appl. Sci. 2020, 10, 914. [Google Scholar] [CrossRef] [Green Version]
- Sutanto, B. Computational fluid dynamic (CFD) modelling of floating photovoltaic cooling system with loop thermosiphon. AIP Conf. Proc. 2019, 2062, 020011. [Google Scholar] [CrossRef]
- Wu, S.; Xiong, C. Passive cooling technology for photovoltaic panels for domestic houses. Int. J. Low Carbon Technol. 2014, 9, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-H.; Park, S.-H.; Kim, J.-T. Experimental Performance of a Photovoltaic-thermal Air Collector. Energy Procedia 2014, 48, 888–894. [Google Scholar] [CrossRef] [Green Version]
- El Mays, A.; Ammar, R.; Hawa, M.; Akroush, M.A.; Hachem, F.; Khaled, M.; Ramadan, M. Improving Photovoltaic Panel Using Finned Plate of Aluminum. Energy Procedia 2017, 119, 812–817. [Google Scholar] [CrossRef]
- Guardian, I.; Sutanto, B.; Rachmanto, R.A.; Hadi, S.; Arifin, Z. Improving the Performance of Photovoltaic Panels by Using Aluminum Heat Sink. In Proceedings of the 6th International Conference and Exhibition on Sustainable Energy and Advanced Materials, Surakarta, Indonesia, 16–17 October 2020; pp. 437–448. [Google Scholar] [CrossRef]
- Rahman, M.; Hasanuzzaman, M.; Rahim, N. Effects of various parameters on PV-module power and efficiency. Energy Convers. Manag. 2015, 103, 348–358. [Google Scholar] [CrossRef]
- Nadda, R.; Kumar, A.; Maithani, R. Efficiency improvement of solar photovoltaic/solar air collectors by using impingement jets: A review. Renew. Sustain. Energy Rev. 2018, 93, 331–353. [Google Scholar] [CrossRef]
- Klugmann-Radziemska, E. Thermal performance of Si and GaAs based solar cells and modules: A review. Prog. Energy Combust. Sci. 2003, 29, 407–424. [Google Scholar] [CrossRef]
- Jiang, J.-A.; Wang, J.-C.; Kuo, K.-C.; Su, Y.-L.; Shieh, J.-C.; Chou, J.-J. Analysis of the junction temperature and thermal characteristics of photovoltaic modules under various operation conditions. Energy 2012, 44, 292–301. [Google Scholar] [CrossRef]
- Tobnaghi, D.M.; Madatov, R.; Farhadi, P. Investigation of light intensity and temperature dependency of solar cells electric parameters. Electr. Power Eng. Control Syst. 2013, 21–23. Available online: http://ena.lp.edu.ua:8080/handle/ntb/26855 (accessed on 22 September 2020).
Specifications | Value |
---|---|
Solar panels | Poly-crystalline 62.4 × 156 mm |
Open-circuit voltage (VOC) | 21.2 V |
Short-circuit current (ISC) | 3.35 A |
Maximum power (PMPP) | 50 Wp |
Efficiency | 14% |
Operating module temperature | −40 to 85 °C |
Dimensions | 655 × 670 × 25 mm |
Temperature coefficient of power | −0.44%/°C |
Variation | Intensity (W/m2) | Temperature (°C) | Voc (V) | Isc (A) | Fill Factor (-) | Efficiency (%) | Error (%) |
---|---|---|---|---|---|---|---|
Without cooling | 1100 | 64.6 | 19.2 | 2.81 | 2.81 | 9.5 | 9.95 |
No fin heat sink | 1100 | 61.6 | 19.4 | 2.86 | 2.86 | 10.55 | 7.62 |
5 fin heat sink | 1100 | 57.7 | 19.5 | 3 | 3 | 11.42 | 5.07 |
10 fin heat sink | 1100 | 55.6 | 19.6 | 3.12 | 3.12 | 12.03 | 1.72 |
15 fin heat sink | 1100 | 54.4 | 19.7 | 3.18 | 3.18 | 12.24 | 1.75 |
Intensity (W/m2) | Temperature (°C) | Voc (V) | Isc (A) | Fill Factor (-) | Efficiency (%) | Error (%) |
---|---|---|---|---|---|---|
400 | 32.3 | 20.7 | 1.25 | 0.69 | 12.86 | 2.38 |
500 | 37.2 | 20.4 | 1.41 | 0.76 | 12.56 | 0.39 |
600 | 40 | 20.4 | 1.7 | 0.71 | 12.61 | 6.17 |
700 | 45 | 20.2 | 2.18 | 0.74 | 13.44 | 1.17 |
800 | 48.7 | 20.1 | 2.54 | 0.75 | 13.6 | 1.19 |
900 | 50.9 | 19.9 | 2.81 | 0.76 | 13.44 | 5.24 |
1000 | 53.5 | 19.7 | 2.95 | 0.77 | 12.77 | 6.15 |
1100 | 55.6 | 19.6 | 3.12 | 0.76 | 12.03 | 5.79 |
Variation | Intensity (W/m2) | Temperature (°C) | Voc (V) | Isc (A) | Fill Factor (-) | Efficiency (%) | Error (%) |
---|---|---|---|---|---|---|---|
Cu-Cu | 1100 | 53.7 | 19.8 | 3.15 | 0.78 | 12.92 | 1.01 |
Cu-Al | 1100 | 55.6 | 19.7 | 3.12 | 0.76 | 12.79 | 5.70 |
Al-Cu | 1100 | 57.6 | 19.6 | 3.11 | 0.75 | 12.1 | 1.85 |
Al-Al | 1100 | 59.1 | 19.6 | 3.1 | 0.75 | 11.88 | 1.81 |
Intensity (W/m2) | Temperature (°C) | Voc (V) | Isc (A) | Fill Factor (-) | Efficiency (%) | Error (%) |
---|---|---|---|---|---|---|
400 | 31 | 20.7 | 1.38 | 0.66 | 13.54 | 0.67 |
500 | 35.5 | 20.5 | 1.58 | 0.72 | 13.45 | 0.52 |
600 | 37.9 | 20.5 | 1.93 | 0.7 | 13.38 | 0.90 |
700 | 42.4 | 20.3 | 2.24 | 0.72 | 13.26 | 0.75 |
800 | 44.6 | 20.1 | 2.55 | 0.72 | 13.36 | 2.12 |
900 | 48.9 | 19.9 | 2.88 | 0.75 | 13.65 | 6.72 |
1000 | 52.4 | 19.8 | 2.99 | 0.76 | 12.79 | 1.01 |
1100 | 53.7 | 19.8 | 3.15 | 0.78 | 12.92 | 1.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arifin, Z.; Suyitno, S.; Tjahjana, D.D.D.P.; Juwana, W.E.; Putra, M.R.A.; Prabowo, A.R. The Effect of Heat Sink Properties on Solar Cell Cooling Systems. Appl. Sci. 2020, 10, 7919. https://doi.org/10.3390/app10217919
Arifin Z, Suyitno S, Tjahjana DDDP, Juwana WE, Putra MRA, Prabowo AR. The Effect of Heat Sink Properties on Solar Cell Cooling Systems. Applied Sciences. 2020; 10(21):7919. https://doi.org/10.3390/app10217919
Chicago/Turabian StyleArifin, Zainal, Suyitno Suyitno, Dominicus Danardono Dwi Prija Tjahjana, Wibawa Endra Juwana, Mufti Reza Aulia Putra, and Aditya Rio Prabowo. 2020. "The Effect of Heat Sink Properties on Solar Cell Cooling Systems" Applied Sciences 10, no. 21: 7919. https://doi.org/10.3390/app10217919
APA StyleArifin, Z., Suyitno, S., Tjahjana, D. D. D. P., Juwana, W. E., Putra, M. R. A., & Prabowo, A. R. (2020). The Effect of Heat Sink Properties on Solar Cell Cooling Systems. Applied Sciences, 10(21), 7919. https://doi.org/10.3390/app10217919