Time Series Forecasting of Agricultural Products’ Sales Volumes Based on Seasonal Long Short-Term Memory
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Data
3.1.1. Data Collection and Observations
3.1.2. Data Preprocessing
3.2. Forecasting Models
3.2.1. AutoArima
3.2.2. Prophet
3.2.3. Long Short-Term Memory
3.2.4. Seasonal Long Short-Term Memory
4. Experimental Results and Discussions
4.1. Experimental Environments
4.2. Performance Comparisons
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huchet-Bourdon, M. Agricultural Commodity Price Volatility: An Overview (No. 52); OECD Food, Agriculture and Fisheries Papers; OECD Publishing: Paris, France, 2011. [Google Scholar] [CrossRef]
- Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldu, F.X. A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 2017, 143, 23–37. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldu, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Kurumatani, K. Time series forecasting of agricultural product prices based on recurrent neural networks and its evaluation method. SN Appl. Sci. 2020, 2, 1434. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Li, X.; Zhou, H. Artificial bee colony-based combination approach to forecasting agricultural commodity prices. Int. J. Forecast. 2019. [Google Scholar] [CrossRef]
- Ahmad, A.; Javaid, N.; Mateen, A.; Awais, M.; Khan, Z.A. Short-term load forecasting in smart grids: An intelligent modular approach. Energies 2019, 12, 164. [Google Scholar] [CrossRef]
- Raza, M.Q.; Khosravi, A. A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352–1372. [Google Scholar] [CrossRef]
- Dauta, M.A.M.; Hassana, M.Y.; Abdullaha, H.; Rahmana, H.A.; Abdullaha, M.P.; Hussina, F. Building electrical energy consumption forecasting analysis using conventional and artificial intelligence methods: A review. Renew. Sustain. Energy Rev. 2017, 70, 1108–1118. [Google Scholar] [CrossRef]
- Deb, C.; Zhang, F.; Yanga, J.; Lee, S.E.; Shah, K.W. A review on time series forecasting techniques for building energy consumption. Renew. Sustain. Energy Rev. 2017, 74, 902–924. [Google Scholar] [CrossRef]
- Gao, Y.; Fang, C.; Ruan, Y. A novel model for the prediction of long-term building energy demand: LSTM with Attention layer. IOP Conf. Ser. Earth Environ. Sci. 2019, 294, 012033. [Google Scholar] [CrossRef]
- Nguyen, H.V.; Naeem, M.A.; Wichitaksorn, N.; Pears, R. A smart system for short-term price prediction using time series models. Comput. Electr. Eng. 2019, 76, 339–352. [Google Scholar] [CrossRef]
- Poornima, S.; Pushpalatha, M. Prediction of rainfall using intensified LSTM based recurrent neural network with weighted linear units. Atmosphere 2019, 10, 668. [Google Scholar] [CrossRef]
- McNally, S.; Roche, J.; Caton, S. Predicting the price of bitcoin using machine learning. In Proceedings of the 26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, Cambridge, UK,, 21–23 March 2018; pp. 339–343. [Google Scholar] [CrossRef]
- Vochozka, M.; Vrbka, J.; Suler, P. Bankruptcy or success? the effective prediction of a company’s financial development using LSTM. Sustainability 2020, 12, 7529. [Google Scholar] [CrossRef]
- Hao, Y.; Gao, Q. Predicting the Trend of Stock Market Index Using the Hybrid Neural Network Based on Multiple Time Scale Feature Learning. Appl. Sci. 2020, 10, 3961. [Google Scholar] [CrossRef]
- Mondal, P.; Shit, L.; Goswami, S. Study of effectiveness of time series modeling (ARIMA) in forecasting stock prices. Int. J. Comput. Sci. Eng. Appl. (IJCSEA) 2014, 4, 13–29. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Chou, J.S.; Ngo, N.T. Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns. Appl. Energy 2016, 177, 751–770. [Google Scholar] [CrossRef]
- Divina, F.; Torres, M.G.; Vela, F.A.G.; Noguera, J.L.V. A comparative study of time series forecasting methods for short term electric energy consumption prediction in smart buildings. Energies 2019, 12, 1934. [Google Scholar] [CrossRef]
- Ruekkasaem, L.; Sasananan, M. Forecasting agricultural products prices using time series methods for crop planning. Int. J. Mech. Eng. Technol. (IJMET) 2018, 9, 957–971. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis: Forecasting and Control; Holden Day: San Francisco, CA, USA, 1976. [Google Scholar]
- Taylor, S.J.; Letham, B. Forecasting at scale. Am. Stat. 2018, 72, 37–45. [Google Scholar] [CrossRef]
- Tran, N.; Nguyen, T.; Nguyen, B.M.; Nguyen, G. A multivariate fuzzy time series resource forecast model for clouds using LSTM and data correlation analysis. Procedia Comput. Sci. 2018, 126, 636–645. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Neil, D.; Pfeiffer, M.; Liu, S.C. Phased LSTM: Accelerating recurrent network training for long or event-based sequences. In Proceedings of the 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 9 September 2016; pp. 3889–3897. [Google Scholar] [CrossRef]
- Hsu, D. Multi-period time series modeling with sparsity via Bayesian variational inference. arXiv 2018, arXiv:1707.00666v3. [Google Scholar]
- Khashei, M.; Bijari, M.; Ardali, G.A.R. Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs). Neurocomputing 2009, 72, 956–967. [Google Scholar] [CrossRef]
- Cenas, P.V. Forecast of agricultural crop price using time series and Kalman filter method. Asia Pac. J. Multidiscip. Res. 2017, 5, 15–21. [Google Scholar]
- Anggraeni, W.; Mahananto, F.; Sari, A.Q.; Zaini, Z.; Andri, K.B. Sumaryanto, Forecasting the price of Indonesia’s rice using Hybrid Artificial Neural Network and Autoregressive Integrated Moving Average (Hybrid NNs-ARIMAX) with exogenous variables. Procedia Comput. Sci. 2019, 161, 677–686. [Google Scholar] [CrossRef]
- Fang, Y.; Guan, B.; Wu, S.; Heravi, S. Optimal forecast combination based on ensemble empirical mode decomposition for agricultural commodity futures prices. J. Forecast. 2020, 39, 877–886. [Google Scholar] [CrossRef]
- Smith, T.G. Pmdarima: ARIMA Estimators for Python. 2017. Available online: http://www.alkaline-ml.com/pmdarima (accessed on 25 February 2020).
- Harvey, A.; Peters, S. Estimation procedures for structural time series models. J. Forecast. 1990, 9, 89–108. [Google Scholar] [CrossRef]
No. | Item | Sales Days | Period | T |
---|---|---|---|---|
1 | WelshOnion | 2014 | 1 June 2014~31 December 2019 | 2040 |
2 | Lettuce | 2014 | 1 June 2014~31 December 2019 | 2040 |
3 | ChineseMallow | 2012 | 1 June 2014~31 December 2019 | 2040 |
4 | Onion | 2009 | 1 June 2014~31 December 2019 | 2040 |
5 | JujubeMiniTomato | 2011 | 1 June 2014~31 December 2019 | 2040 |
Item | Metric | Auto_Arima | Prophet | LSTM | SLSTM | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
sw | sm | sq | swm | smq | swq | swmq | |||||
WO | MAE | 122.87 | 139.83 | 121.2 | 114.47 | 113.9 | 111.45 | 111.37 | 113.96 | 111.75 | 113.67 |
RMSE | 430.72 | 438.1 | 428.6 | 402.59 | 402.22 | 399.56 | 400.76 | 402.22 | 400.62 | 401.67 | |
NMAE | 0.32 | 0.33 | 0.26 | 0.19 | 0.19 | 0.19 | 0.18 | 0.19 | 0.18 | 0.19 | |
Lettuce | MAE | 50.18 | 49.0 | 45.73 | 33.06 | 38.18 | 38.98 | 32.83 | 36.99 | 34.06 | 33.35 |
RMSE | 88.99 | 87.1 | 83.49 | 77.55 | 80.22 | 80.59 | 77.88 | 79.92 | 78.94 | 77.30 | |
NMAE | 0.28 | 0.31 | 0.29 | 0.19 | 0.24 | 0.24 | 0.19 | 0.23 | 0.20 | 0.20 | |
CM | MAE | 7.94 | 8.3 | 7.5 | 7.31 | 7.77 | 7.74 | 7.44 | 7.82 | 7.43 | 8.27 |
RMSE | 12.95 | 13.4 | 12.8 | 12.79 | 13.11 | 12.95 | 13.04 | 12.99 | 12.71 | 13.85 | |
NMAE | 0.35 | 0.37 | 0.35 | 0.27 | 0.3 | 0.3 | 0.28 | 0.29 | 0.29 | 0.3 | |
Onion | MAE | 233.47 | 233.6 | 237.6 | 208.99 | 225.36 | 235.73 | 196.55 | 212.95 | 190.74 | 192.3 |
RMSE | 373.37 | 358.8 | 376.1 | 347.8 | 362.86 | 374.16 | 331.97 | 348.26 | 324.47 | 325.64 | |
NMAE | 0.29 | 0.29 | 0.31 | 0.25 | 0.28 | 0.29 | 0.25 | 0.27 | 0.24 | 0.25 | |
JMT | MAE | 114.51 | 89.2 | 78.3 | 76.57 | 74.23 | 76.09 | 65.32 | 75.62 | 74.89 | 74.32 |
RMSE | 156.06 | 105.8 | 101.8 | 100.81 | 96.09 | 100.05 | 85.75 | 98.7 | 99.69 | 96.53 | |
NMAE | 0.34 | 0.27 | 0.26 | 0.23 | 0.20 | 0.23 | 0.17 | 0.20 | 0.19 | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, T.-W.; Oh, I.-S. Time Series Forecasting of Agricultural Products’ Sales Volumes Based on Seasonal Long Short-Term Memory. Appl. Sci. 2020, 10, 8169. https://doi.org/10.3390/app10228169
Yoo T-W, Oh I-S. Time Series Forecasting of Agricultural Products’ Sales Volumes Based on Seasonal Long Short-Term Memory. Applied Sciences. 2020; 10(22):8169. https://doi.org/10.3390/app10228169
Chicago/Turabian StyleYoo, Tae-Woong, and Il-Seok Oh. 2020. "Time Series Forecasting of Agricultural Products’ Sales Volumes Based on Seasonal Long Short-Term Memory" Applied Sciences 10, no. 22: 8169. https://doi.org/10.3390/app10228169
APA StyleYoo, T.-W., & Oh, I.-S. (2020). Time Series Forecasting of Agricultural Products’ Sales Volumes Based on Seasonal Long Short-Term Memory. Applied Sciences, 10(22), 8169. https://doi.org/10.3390/app10228169