1. Introduction
Over the last decades, ports have played an important role in international trade and most of the overseas shipping of products is aboard deep-sea container vessels [
1]. The increase in traffic of goods and the European unification has led to consider the enhancement of security at border crossings of the European Union. In this sense, the Border Inspection Posts (BIPs) were created in order to guarantee the security at border crossings and the quality of the import-export goods. BIPs are the approved facilities where the checks of goods (transported within containers by trucks or towing vehicles) are carried out before entering the Community territory. However, the sustained growth in the worldwide exchange of goods is creating the need for further inspections resulting in congestion and high load-peaks within the sanitary facilities. This causes time delays and higher costs in the supply chain. The BIPs are thereby bottlenecks that must be necessarily assessed by Port Authorities in order to keep the quality level of the port and avoid losing competitiveness. In order to avoid time delays and congestion in the sanitary facilities, the port management should be able to accurately forecast the number of container passing through these facilities. An accurate prediction of the volume of container traffic through the BIP may become a useful tool to improve human resources, planning operations and the service quality at ports.
Forecasting time series have focused attention of many researchers for a long time. Many efforts have been carried out to improve the existing methodologies and to achieve enhanced models to obtain accurate predictions in any forecasting fields (for instance, energy consumption, transportation, environment, economy, medicine and health). The focus of this study is mainly set on maritime transport due to the traffic associated with the port BIPs. The proposed forecasting techniques can be divided into three categories: single methods, combined methods and hybrid methods.
The first class comprises both linear and nonlinear techniques. Linear techniques are based on the assumption that a linear relationship exists between the future values and the current and past values of the time series. One of the linear models that has attracted more attention over the past few decades is the well-known autoregressive integrated moving averages (ARIMA) model and its further extended versions. Based on the Box and Jenkins methodology [
2] the ARIMA models have been constantly applied to solve forecasting tasks related to maritime transport. ARIMA models were successfully applied to predict export operations in container terminals [
3], to predict certain traffic flows of goods that pass through a port [
4,
5] and recently for predicting container throughput volumes at ports [
6].
Moreover, nonlinear techniques have become a strength alternative against the weaknesses of linear models. This forecasting technique has proved to be effective when time series show nonlinear patterns, overcoming the main constraints of linear models. Real-world problems are complex and mostly generated by an underlying nonlinear process [
7], such could be the case of volume of containers demand at BIPs. In this subcategory, two machine learning techniques highlight: artificial neural networks (ANNs) and support vector machines for regression (SVR). Instead of ANNs, SVR has attracted increasing attention in recent years due to its inherent abilities to overcome some general limitations of ANNs, such as the achievement of a global minimum. Due to its great generalization ability, SVR has been used in forecasting transport tasks with promising results. These two techniques have been constantly compared in the research literature.
The second category comprises the combined models. These models attempt to overcome the constraints of the single forecasting models when time series exhibit seasonal features, temporal evolutions, correlations, and other patterns hard to capture by single models. To this aim, single methods are combined to seize the abilities of each one in certain forecasting tasks. One of the most frequently used approaches consists of combining a single prediction technique (mainly a soft computing technique) with a clustering method. Based on the divide-and-conquer principle, clustering methods allow to divide the original database into a number of smaller groups, called clusters. The main assumption is that simpler clusters are easier to solve than addressing the whole database. When the clustering method has divided the database into several clusters, a prediction technique is then applied in each cluster independently. Self-organizing maps (SOMs) [
8] is probably the best-known clustering method. This popular unsupervised learning technique has been proved to be faster and more accurate and efficient than other clustering methods [
9], improving the final prediction performance in time series [
10]. A combined SOM-ANN model was introduced by Chen et al. [
11] to predict traffic flows in transportation. This work also compared the forecasting performance of the proposed model to the obtained with a SOM-ARIMA model and a single ARIMA model. Results showed that the SOM-ANN model outperformed the rest of models. Due to the recent emergence of SVR in transportation, there is hardly any research related to transport combining SOM and SVR in a two-stage procedure. Nevertheless, it is a widespread solution in many other forecasting fields [
12].
The third category includes hybrid models. Single linear models have shown to have several constraints, limitations and disadvantages in particular situations and certain applications (for instance, when the underlying generating mechanism is nonlinear or uncertainty is presented) [
13]. In a similar manner, the use of nonlinear models can be totally inappropriate if linear patterns are presented. Moreover, real-world time series are not completely linear or nonlinear, but rather contain both components. Thus, a methodology using linear and nonlinear models in a hybrid way takes the capabilities of both models, improving the forecasting accuracy and reducing the risk of failure when an unsuitable single model is used. Hybridizing linear models and machine learning techniques have been proposed in recent years to forecast transportation time series. Particularly, ARIMA has been the most commonly used linear model in literature to construct this kind of hybrid model. The first works were proposed considering ANNs as the machine learning technique in [
7,
14] to forecast time series and they concluded that hybrid ARIMA-ANN models were superior to single SARIMA and ANN models. Since then, many research works can be found in the literature in many areas linked to time series analysis [
15,
16]. Several authors were also proposed a hybridization of SARIMA and SVR to address several forecasting tasks outside the transport sector [
17,
18], although it is less widespread compared to SARIMA-ANN models. Related to maritime transport, Xie et al. [
19] proposed several hybrid approaches in a comparative way including the SARIMA-SVR model for container throughput forecasting. All these previous studies coincided in pointing out that a hybrid strategy considering ARIMA and SVR models overcame the performance of single models in their respective domains.
In this study, a combined-hybrid forecasting model is proposed in such a way that a hybrid model (SARIMA-SVR) is combined with a clustering method (SOM) to forecast the daily number of containers passing through a BIP, thus resulting in a SOM-SARIMA-SVR model. This methodology unifies the strengths of clustering methods in decomposing the forecasting task into some relatively easier subtasks (using a SOM method) and the strengths of hybrid models to fit linear and nonlinear components (using a SARIMA-SVR model). Thus, the final aim of this study is twofold: first, to demonstrate that the SOM-SARIMA-SVR outperforms the rest of possible hybrid or combined models in forecasting the daily number of containers passing through BIP of a maritime port; and second, to test the generalization capabilities of SVR in forecasting logistic tasks, especially the container inspection process that can be a bottleneck in the supply chain. To train the new model, a three-step procedure was developed. In the first step a SOM algorithm allows to divide the database into different clusters or regions. On a second step, a SARIMA model is fitted to the data of each cluster in order to capture the seasonality and the linear behavior. Finally, a SVR model is applied over each obtained cluster considering several hybrid approaches (different input configurations) which can consider the original database and the outputs of the first step (residual and predicted values).
The rest of the paper is organized as follows: The second section gives an overview of self-organizing maps (SOM), seasonal autoregressive integrated moving average (SARIMA) and support vector machines for regression (SVR). The empirical data, the combined-hybrid methodology, and the experimental procedure are presented in
Section 3. The fourth section discusses the results obtained. Finally, the last section summarizes the important conclusions of this work.
4. Experimental Results and Discussion
The results of the proposed hybrid SARIMA-SOM-SVR models to predict the daily number of containers passing through the BIP of the Port of Algeciras Bay are presented and discussed in this section. These results are those obtained in the third step of the proposed procedure and they were assessed and compared with those achieved with the single SVR, the combined SOM-SVR, and the hybrid SARIMA-SVR models. Nevertheless, a cursory discussion of the previous results obtained at the first and the second steps (SARIMA and SOM stages) is given in this section for a general overview. The prediction was one-step ahead and two prediction horizons were considered, ph = 1 and ph = 7 days.
First, a two-dimensional competitive Kohonen network (SOM 2-D) was employed as a clustering technique. The final aim of this step is to divide the whole database into several disjoint clusters with similar statistical features. The assumption is that the prediction of a smaller cluster can be easier than the prediction of the whole database. Testing different configurations of the SOM network, the most appropriate SOM map size for the data was 8 × 8 neurons in the output layer with a hexagonal grid topology and a three-dimensional input space.
Figure 3a represents the SOM weight positions, which shows the locations of the data points and the weight vectors after the SOM algorithm was trained. Grey and green points represent neurons and input vectors, respectively. Red lines are the connections between neurons. Although the figure suggests the existence of two different groups (a group appears in the bottom-left region and another more disperse group in the central region), not all the weights can be visualized at the same time (one weight for each element of the input vector). Thus, the SOM neighbor distances could be useful (
Figure 3b). This figure indicates the distances between neighboring neurons, where grey hexagons represent the neurons (8 × 8 map), connecting themselves by the red lines. The color of the segments containing these red lines indicates the distance between neighboring neurons. Lighter colors represent smaller distances, whereas larger distances are represented by darker colors. As the figure indicates, a group of light segments appear in the bottom-right region. This region is bounded by some dark segments. According with the previous figure, this situation indicates that the SOM network has clustered the data into two groups.
These results can be contrasted analytically and are collected in
Table 2, which shows the best results obtained per cluster and its input-vector configuration. Based on two clustering performance indexes (CQI
1, and CQI
2), the two-classes clustering was confirmed to be the best choice for the time series, reaching the highest values of CQI
1 and CQI
2 (0.659 and 717.548, respectively). Consequently, the database was divided into two groups, hereinafter called Cluster 1 and Cluster 2. These results were achieved using a three-element input vector (
nc = 3) with a temporal leap of 7-day in the past. Therefore, the input vector
xt is comprised of the actual value of the time series
yt, and two 7-day lagged past value (
yt−7 and
yt−14), conforming a three-dimensional input space. That is,
xt = [
yt,
yt–7,
yt–14]
T, where
t = 1, 2, …, 1461.
A SARIMA model was applied independently in each cluster in the second step. Considering the nature of the time series of each cluster, the clustered data was stationarized in mean (using a logarithmic transformation) and variance (using second differencing for Cluster 1 and second seasonal differencing for Cluster 2). Then, using an iterative trial-and-error procedure, the best-fitted models were ARIMA(2,0,3) for Cluster 1 (without seasonal part) and SARIMA(2,1,2)(2,1,3)
5, with a seasonality of 5 days for Cluster 2. Although these linear models obtained the best values of the performance indexes, they have to be validated before continuing to step III. The residuals of the model must be satisfied the requirements of a white noise process. Therefore, the residuals of both clusters were checked. On the one hand,
Figure 4 left collects the residual diagnosis plot of Cluster 1. According to
Figure 4a left, the residuals have a mean around zero whereas
Figure 4b left shows no obvious violation of the normality assumption.
Figure 4c,d left show no significant autocorrelation and residuals are thereby uncorrelated. On the other hand,
Figure 4 right shows the residual diagnosis plot of Cluster 2, corresponding to SARIMA(2,1,2)(2,1,3)
5 model. As in the previous case, residuals satisfy the requirements of a white noise process. In conclusion, the ARIMA(2,2,3) and SARIMA(2,1,2)(2,1,3)
5 models were validated as linear models to Cluster 1 and 2, respectively, in the second step. Once the ARIMA model is applied, a set of residuals and predicted values are obtained for each cluster. These values, together with the original data, are used as inputs in the third step.
Finally, in the third step a SVR model was applied to each cluster considering the two proposed hybrid approaches, which were configured depending on the input setting used. Considering each hybrid configuration separately, a most accurate SVR model was achieved in each cluster to fit the data. Two hybrid approaches with two prediction horizons were considered in this third step for each cluster. Therefore, four prediction schemes for each cluster were evaluated (two hybrid approaches for each cluster and two prediction horizons for each hybrid approach). The final prediction results of each hybrid approach were obtained by joining the prediction values achieved in the two clusters as a single predicted time series. That is:
The most accurate models for each hybrid approach are collected in
Table 3. The prediction results in terms of performance indexes reflect those obtained once the predicted values of the two clusters were grouped.
Table 3 is divided according to the prediction horizon used (
ph = 1 or
ph = 7 days). Additionally, for each prediction horizon, results are collected depending on the hybrid configuration applied. For the hybrid approach 2 (SOM-SARIMA-SVR-2), results are presented considering the inputs employed in the model (
y,
e or
p) in order to demonstrate which inputs are most relevant. Regardless of the parameter configuration, only the best value achieved in each performance index is depicted in both prediction horizons for a better understanding. The best overall value of each performance index and the best hybrid configuration are pointed out in bold.
The SOM-SARIMA-SVR-2 (the one without p as input) provides the most accurate results for one-day ahead prediction, followed by the rest of possible models of the hybrid approach 2 (considering different inputs) and finally the hybrid approach 1, in that order. This hybrid approach achieved the best value in at least four performance indexes. In this case, more sophisticated models obtained no better results. Nevertheless, the classical approach considers an additive relationship between the linear and nonlinear component of the time series. Consequently, this is less powerful than the other approach. For one-day ahead predictions, two different input variables (y and e) are proved sufficient to predict the time series accurately. However, there are not great differences among the prediction performances with the rest models.
Similar results were obtained considering the behavior of the models for 7-day ahead prediction, where better values of performance indexes were reached with the hybrid approach 2. The most complex approach (SOM-SARIMA-SVR 2 with all variables as inputs) obtained the best results, reaching four of the five best performance indexes. Surprisingly, the classical approach SARIMA-SOM-SVR-1 is positioned as the third best model, obtaining a great MAE value. However, the results from this prediction horizon do not outperform those obtained using one-day prediction horizon though the difference is not very significant.
Although all the best performance indexes were gained with one-day ahead predictions, good forecasting performance were also obtained considering both prediction horizons and there exist no major differences among the hybrid approaches. Moreover, the use of a certain set of input variables from the second step (SARIMA set) does not seem to be very relevant to improve the performance of the models in the third step. This could be due to the clustering procedure of the second step, which grouped the variables with similar properties, minimizing the negative or positive impact of selecting a certain set of input variables. Nevertheless, better results in any situation were yielded using the more sophisticated models (hybrid approach 2) instead of the classical approach (hybrid approach 1). Particularly, SARIMA-SOM-SVR-2 with variables e and y as inputs of the SVR achieved the best results.
It is worth mentioning that each performance index of any hybrid approach were computed using different configurations of the parameters. That is, for instance, with the SOM-SARIMA-SVR-2 model (with
e and
y as input variables), the configuration of the SVR parameters (
C,
ε and
γ) that reached the best value of
d is not the same as the one obtained the better value of MAE. It may be caused by the high number of model tested, approximately about 10
6 models for each prediction scheme, where there are parameter configurations almost equal. In this sense and in order to get the smallest MAE value (11.679), the best-fitted network of Cluster 1 for this hybrid configuration 2 in the third step is composed by autoregressive window sizes of twelve for the
y input variable (
ny = 12) and two for the
e input from SARIMA step (
ne = 2), being the optimal SVR parameters
C = 200,
γ = 2
−4 and
ε = 2
−8. To model Cluster 2, the best parameter configuration was
ny = 12,
ne = 2,
C = 50,
γ = 2
−2 and
ε = 2
−2. For this network architecture, the number and size of SVR inputs coincide in both clusters. The final prediction is reached joining the predicted values of the two clusters. The best network architecture of the hybrid approach 2 is plotted in
Figure 5.
To conclude, a complete comparison among other hybrid models proposed in literature was performed in order to gain a comprehensive view of the real improvement established by the proposed model. Then, the most accurate single SVR model, the most accurate combined SOM-SVR model and the most accurate hybrid SARIMA-SVR model were also compared against the most accurate proposed model. These comparisons are summarized in
Table 4, where values and models in bold indicate the best overall performance index and model, respectively, considering both prediction horizons. As
Table 4 shows, the proposed SOM-SARIMA-SVR model outperforms the rest of the models in both prediction horizons. The SOM-SARIMA-SVR model is more competitive than the other models in four of the five performance indexes. Interestingly, another model achieves the highest value in one of the five performance index (SARIMA-SVR for
d and
ph = 1; SOM-SVR for R and
ph = 7). It can be concluded that the proposed model performs significantly better than the rest of models, especially in terms of MSE, MAE and MAPE values. This suggest that the “divide-and-conquer” principle, introduced with the usage of the clustering stage, can improve the performance of the hybrid models that consider the hybridization of linear and nonlinear forecasting techniques. The proposed methodology combines the strengths of the combined forecasting models with a clustering stage (clustering + forecasting technique) with the advantages of hybrid forecasting models (linear + nonlinear forecasting technique). The combined-hybrid approach has proved to be more effective than the other models in forecasting tasks and particularly in predicting the daily number of containers to be inspected at BIPs in ports and overcomes SOM-SVR model.
Figure 6 represents a comparison point-to-point between the observed and predicted values for the best-fitted models concerning the
ph = 1 (at the top) and
ph = 7 case (at the bottom), respectively. An example period of five weeks of the year 2012 is represented. These figures clearly show that the proposed model produces a better fit to the data. The SARIMA-SOM-SVR model provides a better prediction of the daily number of containers passing through the BIP even in cases where the values are more difficult to predict.
5. Conclusions
Prediction tasks and forecasting methodologies and models are constantly evolving. Diverse methodologies to address forecasting problems have been proposed with mixed results, highlighting the combination of models and the hybridization of them. In this study, a combined-hybrid SOM-SARIMA-SVR forecasting model has been proposed based on a three-step procedure to predict the daily number of containers passing through a Border Inspection Post of a maritime port.
To reduce the complexity of the problem, a clustering SOM is first applied to obtain smaller regions with similar statistical features which may be easier to predict. A SARIMA model is then fitted within each cluster to obtain predicted values and residuals of the clustered database. Finally, a SVR model is used to forecast each cluster independently using the variables obtained from the second step together with the original data as inputs. The combination of each cluster results in the whole predicted time series. The above methodology involves the advantages of combining a forecasting model with a clustering technique and the strengths of the hybrid models in capture linear and nonlinear patterns.
The proposed SOM-SARIMA-SVR model has been developed and compared to other possible methodologies implied in the process (SVR, SOM-SVR and SARIMA-SVR). The results showed that the SOM-SARIMA-SVR model was the most competitive model, improving the forecasting performance of the rest of the models concerning the prediction of the container demand, outperforming these methodologies. Particularly, considering the SOM-SARIMA-SVR model, two hybrid approaches were assessed: the classical additive approach, where the error term (e) of the linear model is the input of the nonlinear model; and the proposed approach, where the prediction is a function of the original data (y) and the error term (e), and the prediction of the linear model (p). Most accurate results were yielded by the second approach in all cases tested. In addition, there are no significant differences between the prediction performance using both prediction horizons. The same occurs with the introduction of certain variables as inputs. These outcomes highlight the robustness of the model. This investigation suggests thereby that the proposed hybrid approach achieves better outcomes getting higher forecasting performance than the classical additive hybrid approach.
To conclude, this study is the first one in using the SOM-SARIMA-SVR model to forecast the volume of containers passing through a BIP of ports in particular, and for time series forecasting in general with promising results. Due to its ability to seize the strengths of linear and nonlinear models and thereby to capture linear and nonlinear patterns, the proposed model could be applied in other time series where these patterns are jointly presented. Particularly, the use of a clustering technique allows reducing the complexity of the time series, increasing the accuracy of the final prediction. Obviously, some limitations are found in the model. As with any data-driven model, when completely different inputs come into the model, the prediction accuracy could worse. Thus, a retrained model and a readjustment of the parameters might be required over time.
Future works will focus on the application of other latest non-linear techniques, such as Deep Learning, in order to assess any improvements in the prediction. Knowing the daily container demand in advance allows detecting workload peaks in a port facility. This guarantees the correct planning and organization of available human and material resources. The proposed methodology can provide an automatic tool to predict workloads at sanitary facilities avoiding congestion and delays. Therefore, it can be used as a decision-making tool by port managers due to its capacity to plan resources in advance.