Polymer Type Identification of Marine Plastic Litter Using a Miniature Near-Infrared Spectrometer (MicroNIR)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spectrometers
- A bench-top Fourier Transform Infrared Spectrometer (Spotlight 400 FTIR, Frontier ATR; PerkinElmer, Waltham, MA, USA), working in the range of 650–4000 nm, equipped with an attenuated total reflection.
- An ultra-compact device MicroNIR 1700ES (Figure 1), working in the range of 908–1676 nm, distributed by Viavi Solutions—Milpitas, CA, USA.
2.2. MicroNIR Library and Method of Identification
2.3. Polymer Materials
2.3.1. Industrial Reference Polymers
2.3.2. Household Plastics
2.3.3. Environmental Samples
- On the beach and in coastal seawater on Crete in 2019 (35°24′24.56″ N, 25°1′6.55″ E). Size of fragments 1–15 cm (Figure 3a); without any kind of sample washing or pretreatment.
- In the marine sediment in the Eurasian Arctic during the 78 cruise of the R/V “Akademik Mstislav Keldysh” in 2019. Size of fragments 0.4–7 cm (Figure 3b). Plastic samples were extracted from the sample matrix by washing the sediment on sieves (1 mm) with filtered distill water.
- On Oslofjord beaches in 2019. Size of particles 1–5 mm (Figure 3c). Plastic samples were extracted from the matrix by density separation using a saturated solution of NaI.
- On the sea surface water—floating particles, collected by neuston net in the Eurasian Arctic [21] and in the Atlantic Ocean in 2019 during the 78th and 79th cruises of the R/V “Akademik Mstislav Keldysh”. Size of particles 0.2–30 mm (Figure 3d). Plastic particles were extracted from the matrix by washing on sieves (0.2 mm) with filtered distilled water.
3. Results
3.1. Libraries and Methods of Identification
3.1.1. Reference Materials Library
3.1.2. Minimum Size for Detection with MicroNIR
3.1.3. Household Colored Plastic Library
3.1.4. Copolymer Type Identification
3.2. Marine Plastic Litter Identification
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thevenon, F.; Carroll, C.; Sousa, J. Plastic Debris in the Ocean: The Characterization of Marine Plastics and Their Environmental Impacts, Situation Analysis Report; IUCN: Gland, Switzerland, 2014; 52p. [Google Scholar] [CrossRef] [Green Version]
- Plastics—The Facts 2014/2015. An Analysis of European Plastics Production, Demand and Waste Data, Plastics Europe. Available online: https://www.plasticseurope.org/application/files/5515/1689/9220/2014plastics_the_facts_PubFeb2015.pdf (accessed on 7 May 2020).
- Plastics—The Facts 2019. An Analysis of European Plastics Production, Demand and Waste Data, Plastics Europe. Available online: https://www.plasticseurope.org/application/files/9715/7129/9584/FINAL_web_version_Plastics_the_facts2019_14102019.pdf (accessed on 7 May 2020).
- Li, J.; Liu, H.; Chen, J.P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2017, 363, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Bucci, K.; Tulio, M.; Rochman, C.M. What is known and unknown about the effects of plastic pollution: A meta-analysis and systematic review. Ecol. Appl. 2020, 30, e02044. [Google Scholar] [CrossRef]
- Schrank, I.; Trotter, B.; Dummert, J.; Scholz-Böttcher, B.M.; Löder, M.G.; Laforsch, C. Effects of microplastic particles and leaching additive on the life history and morphology of Daphnia magna. Environ. Pollut. 2019, 255, 113233. [Google Scholar] [CrossRef]
- Wilcox, C.; Van Sebille, E.; Hardesty, B.D. Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proc. Natl. Acad. Sci. USA 2015, 112, 11899–11904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, A. Heavy metals, metalloids and other hazardous elements in marine plastic litter. Mar. Pollut. Bull. 2016, 111, 136–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cózar, A.; Martí, E.; Duarte, C.M.; García-De-Lomas, J.; Van Sebille, E.; Ballatore, T.J.; Eguíluz, V.M.; González-Gordillo, J.I.; Pedrotti, M.L.; Echevarría, F.; et al. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation. Sci. Adv. 2017, 3, e1600582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plastics Europe Market Research Group (PEMRG) and Conversion Market & Strategy GmbH, 2018. Available online: https://www.plasticseurope.org/en (accessed on 25 November 2020).
- Kershaw, P.J.; Turra, A.; Galgani, F. (Eds.) Guidelines for the Monitoring and Assessment of Plastic Litter and Microplastics in the Ocean; GESAMP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection; IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP/ISA: London, UK, 2019; 123p. [Google Scholar]
- Rambonnet, L.; Vink, S.C.; Land-Zandstra, A.M.; Bosker, T. Making citizen science count: Best practices and challenges of citizen science projects on plastics in aquatic environments. Mar. Pollut. Bull. 2019, 145, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Citizen Science Projects on Plastic Pollution. Available online: https://www.arocha.org/wp-content/uploads/2018/01/citizen-science-projects.pdf (accessed on 15 October 2020).
- Yan, H.; Siesler, H.W. Hand-held near-infrared spectrometers: State-of-the-art instrumentation and practical applications. NIR News 2018, 29, 8–12. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, H.; Wang, M.; Guo, X.; Lei, Y.; Jin, G. Plastic solid waste identification system based on near infrared spectroscopy in combination with support vector machine. Adv. Ind. Eng. Polym. Res. 2019, 2, 77–81. [Google Scholar] [CrossRef]
- Sagitto Combines Spectroscopy with Machine Learning Models, 2020 Sagitto Ltd. Available online: https://cloud.sagitto.com/ (accessed on 20 November 2020).
- Karlsson, T.M.; Grahn, H.; van Bavel, B.; Geladi, P. Hyperspectral imaging and data analysis for detecting and determining plastic contamination in seawater filtrates. J. Near Infrared Spectrosc. 2016, 24, 141–149. [Google Scholar] [CrossRef]
- Prata, J.C.; da Costa, J.P.; Duarte, A.C.; Rocha-Santos, T. Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends Anal. Chem. 2019, 110, 150–159. [Google Scholar] [CrossRef]
- VIAVI Solutions Inc. MicroNIR Pro v3.0. User Manual; VIAVI Solutions Inc.: Santa Rosa, CA, USA, 2019; 308p. [Google Scholar]
- Hurley, R.R.; Lusher, A.L.; Olsen, M.; Nizzetto, L. Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices. Environ. Sci. Technol. 2018, 52, 7409–7417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yakushev, E.; Gebruk, A.; Osadchiev, A. Microplastics in the Eurasian Arctic–the legacy of Atlantic waters and Siberian rivers. Commun. Earth Environ. 2020. accepted. [Google Scholar]
- Friedrich, D.M.; Hulse, C.A.; von Gunten, M.; Williamson, E.P.; Pederson, C.G.; O’Brien, N.A. Miniature near-infrared spectrometer for point-of-use chemical analysis. In Photonic Instrumentation Engineering; International Society for Optics and Photonics, SPIE: Washington, DC, USA, 2014; Volume 8992, p. 899203. [Google Scholar]
- Alcalà, M.; Blanco, M.; Moyano, D.; Broad, N.W.; O’Brien, N.; Friedrich, D.; Siesler, H.W. Qualitative and quantitative pharmaceutical analysis with a novel hand-held miniature near infrared spectrometer. J. Near Infrared Spectrosc. 2013, 21, 445–457. [Google Scholar]
- Sun, L.; Hsiung, C.; Pederson, C.G.; Zou, P.; Smith, V.; von Gunten, M.; O’Brien, N.A. Pharmaceutical Raw Material Identification Using Miniature Near-Infrared (MicroNIR) Spectroscopy and Supervised Pattern Recognition Using Support Vector Machine. Appl. Spectrosc. 2016, 70, 816–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, N.; Hulse, C.A.; Pfeifer, F.; Siesler, H.W. Near infrared spectroscopic authentication of seafood. J. Near Infrared Spectrosc. 2013, 21, 299–305. [Google Scholar] [CrossRef] [Green Version]
Full Name | Short Name | RIC | Density, g/cm3 | Worldwide Production, % | Found on the Beaches, % of Total Litter | Products |
---|---|---|---|---|---|---|
Polyethylene terephthalate | PET | 1 | 1.3–1.4 | 7.7 | 9 | Bottles for water, soft drinks, juices, cleaners, polyester fabric, etc. |
Polyethylene high density | HDPE | 2 | 0.93–0.97 | 12.2 | 11 | Toys, milk bottles, shampoo bottles, pipes, houseware, etc. |
Polyvinylchloride | PVC | 3 | 1.3–1.45 | 10 | - | Window frames, profiles, floor and wall covering, pipes, cable insulation, etc. |
Polyethylene low density | LDPE | 4 | 0.91–0.94 | 17.5 | 17 | Bags, trays and containers, agricultural film, food packaging film, etc. |
Polypropylene | PP | 5 | 0.895–0.92 | 19.3 | 24 | Food packaging, sweet and snack wrappers, hinged caps, microwave containers, pipes, automotive parts, etc. |
Polystyrene Expanded polystyrene | PS EPS | 6 | 0.96–1.02 | 6.4 | 7 | Food packaging, building insulation, electrical and electronic equipment, inner liner for fridges, eyeglasses frames, etc. |
Polyurethane | PUR | 7 (other) | 0.87–1.42 | 7.9 | - | Building insulation, pillows and mattresses, insulating foams for fridges, etc. |
Polyamide Polycarbonate Silicone | PA PC | 7 (other) | 1.13–1.4 1.2 0.95–1.2 | ∑ = 19 | - | Fishing lines, nylon fabric (PA); eyeglasses lenses, roofing sheets (PC); medical implants, surgical devices, membranes, protective coatings, etc. |
Polymer Type | Size, mm |
---|---|
PET | 2–3 1 |
HDPE | 0.45 2, 0.9 2, 3–5 1 |
PVC | 0.25 3 |
LDPE | 3–5 1 |
PP | 1 1, 2–4 1 |
PS | 0.5 4, 3–4 1 |
PUR | 5–15 4 |
PA | 0.25 3, 3 1 |
PC | 3–4 1 |
Silicone | 5–0 4 |
Type | Color |
---|---|
PET | Transparent, white, orange, pink, red, light and dark blue, light and dark green, brown |
HDPE | Transparent, white, yellow, orange, pink, red, light and dark blue, light and dark green, silver |
PVC | White, brown, gray |
LDPE | Transparent, white, light blue, light green |
PP | Transparent, white, yellow, orange, pink, red, light and dark blue, light and dark green, brown, silver |
PS | Transparent, white, red, light and dark blue, light green |
PUR | White, yellow, red, violet, blue, green |
PA | Transparent, white, yellow, pink, light green |
PC | White, orange, pink, violet, blue, brown |
Silicone | Transparent, yellow, pink, red, violet, light blue, light green |
PET | HDPE | PVC | LDPE | PP | PS | |
---|---|---|---|---|---|---|
PET | 1.00 | |||||
HDPE | −0.06 | 1.00 | ||||
PVC | −0.01 | 0.06 | 1.00 | |||
LDPE | −0.08 | 0.995 | 0.09 | 1.00 | ||
PP | −0.19 | 0.53 | 0.21 | 0.60 | 1.00 | |
PS | −0.37 | 0.17 | −0.12 | 0.19 | 0.23 | 1.00 |
PET | PE | PVC | PP | PS | PUR | PA | PC | Silicone | |
---|---|---|---|---|---|---|---|---|---|
PET | 1.00 | ||||||||
PE | −0.07 | 1.00 | |||||||
PVC | −0.01 | 0.07 | 1.00 | ||||||
PP | −0.37 | 0.56 | 0.21 | 1.00 | |||||
PS | 0.07 | 0.18 | −0.12 | 0.22 | 1.00 | ||||
PUR | 0.04 | 0.04 | 0.03 | −0.12 | 0.25 | 1.00 | |||
PA | −0.12 | 0.35 | 0.47 | 0.03 | 0.13 | 0.01 | 1.00 | ||
PC | 0.61 | −0.24 | −0.10 | 0.39 | 0.14 | 0.43 | −0.11 | 1.00 | |
Silicone | 0.04 | −0.21 | −0.15 | 0.33 | −0.04 | 0.45 | −0.07 | 0.45 | 1.00 |
PET | PE | PVC | PP | PS | PUR | PA | PC | Silicone | |
---|---|---|---|---|---|---|---|---|---|
PET | 1.00 | ||||||||
PE | −0.01 | 1.00 | |||||||
PVC | 0.30 | 0.10 | 1.00 | ||||||
PP | −0.07 | 0.49 | 0.40 | 1.00 | |||||
PS | −0.29 | 0.11 | 0.07 | 0.20 | 1.00 | ||||
PUR | −0.17 | 0.01 | 0.27 | 0.35 | 0.23 | 1.00 | |||
PA | 0.05 | 0.37 | 0.53 | 0.45 | 0.14 | 0.06 | 1.00 | ||
PC | 0.54 | −0.25 | 0.36 | 0.10 | 0.13 | 0.31 | −0.10 | 1.00 | |
Silicone | 0.04 | −0.18 | 0.12 | 0.41 | 0.06 | 0.49 | −0.03 | 0.45 | 1.00 |
№ | Color | Size | MicroNIR | ATR-FTIR | ||
---|---|---|---|---|---|---|
1 | white | macro | PS | 0.99 | PS | 0.99 |
2 | transparent | macro | PA | 0.98 | PA | 0.98 |
3 | transparent | macro | PA | 0.96 | PA | 0.96 |
4 | transparent | macro | PA | 0.94 | PA | 0.97 |
5 | white | macro | PE | 0.99 | PE | 0.99 |
6 | dark blue | meso | PE | 0.90 | PE | 0.98 |
7 | transparent | macro | PP | 0.97 | PP | 0.97 |
8 | transparent | macro | PP | 0.88 | PP | 0.95 |
9 | blue | macro | PP | 0.93 | PP | 0.99 |
10 | dark blue | meso | PP | 0.80 | PP | 0.98 |
11 | transparent | macro | PET | 0.85 | PET | 0.98 |
12 | transparent | meso | PC | 0.94 | PC | 0.99 |
13 | white | macro | PVC | 0.87 | PVC | 0.76 |
14 | yellow | macro | PVC | 0.86 | PVC | 0.73 |
15 | black | macro | undefined | 0.11 | PVC | 0.77 |
16 | gray | macro | PVC | 0.48 | PVC | 0.66 |
17 | dark gray | macro | PVC | 0.95 | PVC | 0.87 |
18 | white | macro | PVC | 0.76 | PVC | 0.87 |
Polymer | Number of Defined Items | Morphology | |
---|---|---|---|
MicroNIR on Board | FTIR | ||
PE | 13 | 15 | all fragments |
PP | 7 | 8 | 7 fragments, 1 fiber |
PUR | 3 | 7 | 4 fragments, 3 fibers |
PVC | 2 | 6 | all fragments |
PET | 1 | 6 | 1 fragment, 5 fibers |
PA | 0 | 3 | all fragments |
PS | 2 | 2 | all fragments |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pakhomova, S.; Zhdanov, I.; van Bavel, B. Polymer Type Identification of Marine Plastic Litter Using a Miniature Near-Infrared Spectrometer (MicroNIR). Appl. Sci. 2020, 10, 8707. https://doi.org/10.3390/app10238707
Pakhomova S, Zhdanov I, van Bavel B. Polymer Type Identification of Marine Plastic Litter Using a Miniature Near-Infrared Spectrometer (MicroNIR). Applied Sciences. 2020; 10(23):8707. https://doi.org/10.3390/app10238707
Chicago/Turabian StylePakhomova, Svetlana, Igor Zhdanov, and Bert van Bavel. 2020. "Polymer Type Identification of Marine Plastic Litter Using a Miniature Near-Infrared Spectrometer (MicroNIR)" Applied Sciences 10, no. 23: 8707. https://doi.org/10.3390/app10238707
APA StylePakhomova, S., Zhdanov, I., & van Bavel, B. (2020). Polymer Type Identification of Marine Plastic Litter Using a Miniature Near-Infrared Spectrometer (MicroNIR). Applied Sciences, 10(23), 8707. https://doi.org/10.3390/app10238707