Raman Analysis of E2 (High) and A1 (LO) Phonon to the Stress-Free GaN Grown on Sputtered AlN/Graphene Buffer Layer
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Raman Spectrum of Graphene
3.2. Raman Spectrum of GaN Epilayer
3.3. Raman E2 (high) Phonon of GaN Epilayer
3.4. Raman A1 (LO) phonon of GaN Epilayer
3.5. X-Ray Diffraction of GaN epilayer
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jain, S.; Willander, M.; Narayan, J.; Overstraeten, R.V. III–nitrides: Growth, characterization, and properties. J. Appl. Phys. 2000, 87, 965–1006. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, S. Current status of GaN-based solid-state lighting. MRS Bull. 2009, 34, 101–107. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Z.; Wei, T.; Yang, S.; Dou, Z.; Wang, Y.; Ci, H.; Chang, H.; Qi, Y.; Yan, J. Improved epitaxy of AlN film for deep-ultraviolet light-emitting diodes enabled by graphene. Adv. Mater. 2019, 31, 1807345. [Google Scholar] [CrossRef] [PubMed]
- Glavin, N.R.; Chabak, K.D.; Heller, E.R.; Moore, E.A.; Prusnick, T.A.; Maruyama, B.; Walker, D.E., Jr.; Dorsey, D.L.; Paduano, Q.; Snure, M. Flexible Gallium Nitride for High-Performance, Strainable Radio-Frequency Devices. Adv. Mater. 2017, 29, 1701838. [Google Scholar] [CrossRef] [PubMed]
- Krames, M.R.; Shchekin, O.B.; Mueller-Mach, R.; Mueller, G.O.; Zhou, L.; Harbers, G.; Craford, M.G. Status and future of high-power light-emitting diodes for solid-state lighting. J. Disp. Technol. 2007, 3, 160–175. [Google Scholar] [CrossRef] [Green Version]
- Chung, K.; Lee, C.-H.; Yi, G.-C. Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science 2010, 330, 655–657. [Google Scholar] [CrossRef]
- Jia, Y.; Ning, J.; Zhang, J.; Yan, C.; Wang, B.; Zhang, Y.; Zhu, J.; Shen, X.; Dong, J.; Wang, D. Transferable GaN Enabled by Selective Nucleation of AlN on Graphene for High-Brightness Violet Light-Emitting Diodes. Adv. Opt. Mater. 2020, 8, 1901632. [Google Scholar] [CrossRef]
- Ning, J.; Yan, C.; Jia, Y.; Wang, B.; Zeng, Y.; Zhang, J.; Wang, D.; Hao, Y. GaN Films Deposited on Sapphire Substrates Sputter-Coated with AlN Followed by Monolayer Graphene for Solid-State Lighting. ACS Appl. Nano Mater. 2020, 3, 5061–5069. [Google Scholar] [CrossRef]
- Azuhata, T.; Sota, T.; Suzuki, K.; Nakamura, S. Polarized raman spectra in GaN. J. Phys. Condens. Matter 1995, 7, L129. [Google Scholar] [CrossRef]
- Perlin, P.; Jauberthie-Carillon, C.; Itie, J.P.; San Miguel, A.; Grzegory, I.; Polian, A. Raman scattering and X-ray-absorption spectroscopy in gallium nitride under high pressure. Phys. Rev. B 1992, 45, 83. [Google Scholar] [CrossRef]
- Kozawa, T.; Kachi, T.; Kano, H.; Taga, Y.; Hashimoto, M.; Koide, N.; Manabe, K. Raman scattering from LO phonon-plasmon coupled modes in gallium nitride. J. Appl. Phys. 1994, 75, 1098–1101. [Google Scholar] [CrossRef]
- Chen, Z.; Qi, Y.; Chen, X.; Zhang, Y.; Liu, Z. Direct CVD growth of graphene on traditional glass: Methods and mechanisms. Adv. Mater. 2019, 31, 1803639. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Chen, Z.; Li, W.; Yan, J.; Hou, R.; Yang, S.; Liu, Z.; Yuan, G.; Wang, J.; Li, J. Graphene-assisted quasi-van der Waals epitaxy of AlN film for ultraviolet light emitting diodes on nano-patterned sapphire substrate. Appl. Phys. Lett. 2019, 114, 091107. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.; Min, K.-A.; Kang, B.K.; Shin, D.H.; Yoo, J.; Yang, W.S.; Lee, S.W.; Hong, S.; Hong, Y.J. Remote heteroepitaxy across graphene: Hydrothermal growth of vertical ZnO microrods on graphene-coated GaN substrate. Appl. Phys. Lett. 2018, 113, 233103. [Google Scholar] [CrossRef]
- Shen, X.; Wang, D.; Ning, J.; Wang, B.; Guo, H.; Zhang, C.; Jia, Y.; Dong, J.; Feng, X.; Wang, X.; et al. MMA-enabled ultraclean graphene transfer for fast-response graphene/GaN ultraviolet photodetectors. Carbon 2020, 169, 92–98. [Google Scholar] [CrossRef]
- Nagarajan, S.; Svensk, O.; Lehtola, L. Stress distribution in GaN nanopillars using confocal Raman mapping technique. Appl. Phys. Lett. 2014, 104, 151906. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.H.; Katharria, Y.S.; Kim, H.Y.; Kim, H.K.; Ko, K.B.; Han, N.; Kang, J.H.; Park, Y.J.; Suh, E.-K.; Hong, C.-H. Stress-relaxed growth of n-gan epilayers. Appl. Phys. Lett. 2012, 100, 181904. [Google Scholar] [CrossRef]
- Song, B.; Jian, J.; Wang, G.; Bao, Q.; Chen, X. Temperature dependence of the A1(LO) and E2 (high) phonons in hexagonal InN nanowires. J. Appl. Phys. 2007, 101, L139. [Google Scholar] [CrossRef]
- Tripathy, S.; Chua, S.J.; Hao, M.; Sia, E.; Ramam, A.; Zhang, J.; Sun, W.; Wang, L. Micro-Raman scattering in laterally epitaxial overgrown GaN. J. Appl. Phys. 2002, 91, 5840–5852. [Google Scholar] [CrossRef]
- Wu, J.-B.; Lin, M.-L.; Cong, X.; Liu, H.-N.; Tan, P.-H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Tan, P.H. Raman Spectroscopy of Two-Dimensional Materials; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Childres, I.; Jauregui, L.A.; Park, W.; Cao, H.; Chen, P. Raman spectroscopy of graphene and related materials. New Dev. Photon Mater. Res. 2013, 1, 1–20. [Google Scholar]
- Ado, J.; Cançado, L.G. Perspectives on Raman spectroscopy of graphene-based systems: From the perfect two-dimensional surface to charcoal. Phys. Chem. Chem. Phys. 2012, 14, 15246–15256. [Google Scholar]
- Davydov, V.Y.; Kitaev, Y.E.; Goncharuk, I.; Smirnov, A.; Graul, J.; Semchinova, O.; Uffmann, D.; Smirnov, M.; Mirgorodsky, A.; Evarestov, R. Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys. Rev. B 1998, 58, 12899. [Google Scholar] [CrossRef] [Green Version]
- Arguello, C.; Rousseau, D.L.; Porto, S.D.S. First-order Raman effect in wurtzite-type crystals. Phys. Rev. 1969, 181, 1351. [Google Scholar] [CrossRef]
- Schustek, P.; Hocker, M.; Klein, M.; Simon, U.; Scholz, F.; Thonke, K. Spectroscopic study of semipolar (1122)-hvpe GaN exhibiting high oxygen incorporation. J. Appl. Phys. 2014, 116, 413–454. [Google Scholar] [CrossRef]
- Menéndez, J.; Cardona, M. Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and α− S n: Anharmonic effects. Phys. Rev. B 1984, 29, 2051. [Google Scholar] [CrossRef]
- Lee, I.-H.; Choi, I.-H.; Lee, C.-R.; Shin, E.-j.; Kim, D.; Noh, S.K.; Son, S.-J.; Lim, K.Y.; Jae Lee, H. Stress relaxation in Si-doped GaN studied by Raman spectroscopy. J. Appl. Phys. 1998, 83, 5787–5791. [Google Scholar] [CrossRef]
- Liu, M.S.; Bursill, L.A.; Prawer, S.; Nugent, K.; Tong, Y.; Zhang, G.Y. Temperature dependence of Raman scattering in single crystal GaN films. Appl. Phys. Lett. 1999, 74, 3125–3127. [Google Scholar] [CrossRef]
- Harima, H. Properties of gan and related compounds studied by means of raman scattering. J. Phys. Condens. Matter 2002, 14, R967. [Google Scholar] [CrossRef]
- Park, A.H.; Seo, T.H.; Chandramohan, S.; Lee, G.H.; Min, K.H.; Lee, S.; Kim, M.J.; Hwang, Y.G.; Suh, E.-K. Efficient stress-relaxation in InGaN/GaN light-emitting diodes using carbon nanotubes. Nanoscale 2015, 7, 15099–15105. [Google Scholar] [CrossRef] [PubMed]
- Bergman, L.; Alexson, D.; Murphy, P.L.; Nemanich, R.J.; Dutta, M.; Stroscio, M.A.; Balkas, C.; Shin, H.; Davis, R.F. Raman analysis of phonon lifetimes in AlN and GaN of wurtzite structure. Phys. Rev. B 1999, 59, 12977. [Google Scholar] [CrossRef] [Green Version]
- Kuball, M.; Hayes, J.; Shi, Y.; Edgar, J. Phonon lifetimes in bulk AlN and their temperature dependence. Appl. Phys. Lett. 2000, 77, 1958–1960. [Google Scholar] [CrossRef]
- Chierchia, R.; Böttcher, T.; Heinke, H.; Einfeldt, S.; Hommel, D. Microstructure of heteroepitaxial gan revealed by X-ray diffraction. J. Appl. Phys. 2003, 93, 8918–8925. [Google Scholar] [CrossRef]
Number | Substrate | Buffer Layer | Epitaxial Layer |
---|---|---|---|
sample 1 | sapphire | sputtered aluminum nitride (AlN)/graphene | gallium nitride (GaN) |
sample 2 | sapphire | MOCVD AlN/graphene | GaN |
sample 3 | sapphire | graphene/MOCVD AlN | GaN |
sample 4 | sapphire | MOCVD AlN | GaN |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Ning, J.; Zhang, J.; Jia, Y.; Yan, C.; Wang, B.; Wang, D. Raman Analysis of E2 (High) and A1 (LO) Phonon to the Stress-Free GaN Grown on Sputtered AlN/Graphene Buffer Layer. Appl. Sci. 2020, 10, 8814. https://doi.org/10.3390/app10248814
Zeng Y, Ning J, Zhang J, Jia Y, Yan C, Wang B, Wang D. Raman Analysis of E2 (High) and A1 (LO) Phonon to the Stress-Free GaN Grown on Sputtered AlN/Graphene Buffer Layer. Applied Sciences. 2020; 10(24):8814. https://doi.org/10.3390/app10248814
Chicago/Turabian StyleZeng, Yu, Jing Ning, Jincheng Zhang, Yanqing Jia, Chaochao Yan, Boyu Wang, and Dong Wang. 2020. "Raman Analysis of E2 (High) and A1 (LO) Phonon to the Stress-Free GaN Grown on Sputtered AlN/Graphene Buffer Layer" Applied Sciences 10, no. 24: 8814. https://doi.org/10.3390/app10248814
APA StyleZeng, Y., Ning, J., Zhang, J., Jia, Y., Yan, C., Wang, B., & Wang, D. (2020). Raman Analysis of E2 (High) and A1 (LO) Phonon to the Stress-Free GaN Grown on Sputtered AlN/Graphene Buffer Layer. Applied Sciences, 10(24), 8814. https://doi.org/10.3390/app10248814