Influence of Soil Characteristics on Wood Biodeterioration by Brown Rot Fungi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sites and Soil pH from Which Decayed Utility Poles Were Collected
2.2. Influence of Iron on Wood Weight Losses by the Isolated Brown Rot Fungi
2.3. Effect of Humic Acid Treatment on Leaching of Cu-Based Wood Preservatives
2.4. Long Term Exposition Test of Wood Pole Segments
2.5. Influence of Wood Decay on the Stiffness of Wood
2.6. Statistical Analysis
3. Results
3.1. Sites and Soil pH from Which Decayed Utility Poles Were Collected
3.2. Influence of Iron on Weight Losses by the Isolated Brown Rot Fungi
3.3. Effect of Humic Acid Treatment on Leaching of Cu-Based Wood Preservatives
3.4. Long Term Exposition Test of Wood Pole Segments
3.5. Influence of Wood Decay on the Stiffness of Wood
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pulleman, M.; Creamer, R.; Hamer, U.; Helder, J.; Pelosi, C.; Pérès, G.; Rutgers, M. Soil biodiversity, biological indicators and soil ecosystem services—An overview of European approaches. Curr. Opin. Environ. Sustain. 2012, 4, 529–538. [Google Scholar] [CrossRef]
- Haq, I.U.; Zhang, M.; Yang, P.; van Elsas, J.D. The interactions of bacteria with fungi in soil: Emerging concepts. Adv. Appl. Microbiol. 2014, 89, 185–215. [Google Scholar] [PubMed]
- Warmink, J.A.; Van Elsas, J.D. Selection of bacterial populations in the mycosphere of Laccaria proxima: Is type III secretion involved? ISME J. 2008, 2, 887–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mommer, L.; Weemstra, M. The role of roots in the resource economics spectrum. New Phytol. 2012, 195, 725–727. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Mommer, L.; De Vries, F.T. Going underground: Root traits as drivers of ecosystem processes. Trends Ecol. Evol. 2014, 29, 692–699. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; de Deyn, G.; de Goede, R.; Fleskensd, L.; Geissend, V.; Kuyperb, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Nortcliff, S. Standardisation of soil quality attributes. Agric. Ecosyst. Environ. 2002, 88, 161–168. [Google Scholar] [CrossRef]
- Bárcenas-Moreno, G.; Gómez-Brandón, M.; Rousk, J.; Baath, E. Adaptation of soil microbial communities to temperature: Comparison of fungi and bacteria in a laboratory experiment. Glob. Chang. Biol. 2009, 15, 2950–2957. [Google Scholar] [CrossRef]
- Barnard, R.L.; Osborne, C.A.; Firestone, M.K. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J. 2013, 7, 2229–2241. [Google Scholar] [CrossRef]
- Edwards, I.P.; Zak, D.R.; Kellner, H.; Eisenlord, S.D.; Pregitzer, K.S. Simulated Atmospheric N Deposition Alters Fungal Community Composition and Suppresses Ligninolytic Gene Expression in a Northern Hardwood Forest. PLoS ONE 2011, 6, e20421. [Google Scholar] [CrossRef] [Green Version]
- British Standards Institution (BSI). EN 460 Durability of Wood and Wood-Based Products Natural-Durability of Solid Wood-Guide to the Durability Requirements for Wood to be used in Hazard Classes; BSI: London, UK, 1994. [Google Scholar]
- Bollmus, S.; Rangno, N.; Militz, H.; Gellerich, A. Analyses of Premature Failure of Utility Poles; The International Research Group on Wood Protection: Stockholm, Sweden, 2012. [Google Scholar]
- Ribera, J.; Schubert, M.; Fink, S.; Cartabia, M.; Schwarze, F.W. Premature failure of utility poles in Switzerland and Germany related to wood decay basidiomycetes. Holzforschung 2017, 71, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Freeman, M.; McIntyre, C. A comprehensive review of copper-based wood preservatives with a focus on new micronized or dispersed copper systems. For. Prod. J. 2008, 58, 6–27. [Google Scholar]
- Guo, H.; Bachtiar, E.V.; Ribera, J.; Heeb, M.; Schwarze, F.W.M.R.; Burgert, I. Non-biocidal preservation of wood against brown-rot fungi with a TiO2/Ce xerogel. Green Chem. 2018, 20, 1375–1382. [Google Scholar] [CrossRef]
- Ribera, J.; Fink, S.; Bas, M.D.C.; Schwarze, F.W.M.R. Integrated control of wood destroying basidiomycetes combining Cu-based wood preservatives and Trichoderma spp. PLoS ONE 2017, 12, e0174335. [Google Scholar] [CrossRef]
- Ribera, J.; Gandía, M.; Marcos, J.F.; Bas, M.C.; Fink, S.; Schwarze, F.W.M.R. Effect of Trichoderma-enriched biochar in the integrated wood protection strategy. PLoS ONE 2017, 12, e0183004. [Google Scholar] [CrossRef] [Green Version]
- Arantes, V.; Qian, Y.; Kelley, S.S.; Milagres, A.M.F.; Filley, T.R.; Jellison, J.; Goodell, B. Biomimetic oxidative treatment of spruce wood studied by pyrolysis–molecular beam mass spectrometry coupled with multivariate analysis and 13C-labeled tetramethylammonium hydroxide thermochemolysis: Implications for fungal degradation of wood. JBIC J. Biol. Inorg. Chem. 2009, 14, 1253–1263. [Google Scholar] [CrossRef]
- Arantes, V.; Milagres, A.M.F.; Filley, T.R.; Goodell, B. Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: The relevance of nonenzymatic Fenton-based reactions. J. Ind. Microbiol. Biotechnol. 2011, 38, 541–555. [Google Scholar] [CrossRef]
- Kleman-Leyer, K.; Agosin, E.; Conner, A.H.; Kirk, T.K. Changes in Molecular Size Distribution of Cellulose during Attack by White Rot and Brown Rot Fungi. Appl. Environ. Microbiol. 1992, 58, 1266–1270. [Google Scholar] [CrossRef] [Green Version]
- Fomina, M.; Hillier, S.; Charnock, J.M.; Melville, K.; Alexander, I.J.; Gadd, G.M. Role of oxalic acid over-excretion in toxic metal mineral transformations by Beauveria caledonica. Appl. Environ. Microbiol. 2005, 71, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Gadd, G.M.; Bahri-Esfahani, J.; Li, Q.; Rhee, Y.J.; Wei, Z.; Fomina, M.; Liang, X. Oxalate production by fungi: Significance in geomycology, biodeterioration and bioremediation. Fungal Biol. Rev. 2014, 28, 36–55. [Google Scholar] [CrossRef]
- Munir, E.; Yoon, J.J.; Tokimatsu, T.; Hattori, T.; Shimada, M. A physiological role for oxalic acid biosynthesis in the wood-rotting basidiomycete Fomitopsis palustris. Proc. Natl. Acad. Sci. USA 2001, 98, 11126–11130. [Google Scholar] [CrossRef] [Green Version]
- Rigling, D.; Günthardt-Goerg, M.S.; Blauenstein, H.; Frey, B. Accumulation of heavy metals into Armillaria rhizomorphs from contaminated soils. For. Snow Landsc. Res. 2006, 80, 213–220. [Google Scholar]
- Rizzo, D.M.; Blanchette, R.A.; Palmer, M.A. Biosorption of metal ions by Armillaria rhizomorphs. Can. J. Bot. 1992, 70, 1515–1520. [Google Scholar] [CrossRef]
- Tang, J.D.; Parker, L.A.; Perkins, A.D.; Sonstegard, T.S.; Schroeder, S.G.; Nicholas, D.D.; Diehl, S.V. Gene Expression Analysis of Copper Tolerance and Wood Decay in the Brown Rot Fungus Fibroporia radiculosa. Appl. Environ. Microbiol. 2012, 79, 1523–1533. [Google Scholar] [CrossRef] [Green Version]
- Schwarze, F.W.M.R.; Baum, S. Mechanisms of reaction zone penetration by decay fungi in wood of beech (Fagus sylvatica). New Phytol. 2000, 146, 129–140. [Google Scholar] [CrossRef]
- Schwarze, F.W.M.R. Wood decay under the microscope. Fungal Biol. Rev. 2007, 21, 133–170. [Google Scholar] [CrossRef]
- Curling, S.F.; Clausen, C.A.; Winandy, J.E. Relationships between mechanical properties, weight loss, and chemical composition of wood during incipient brown-rot decay. For. Prod. J. 2002, 52, 34–39. [Google Scholar]
- De Beeck, M.O.; Ruytinx, J.; Smits, M.M.; Vangronsveld, J.; Colpaert, J.V.; Rineau, F. Belowground fungal communities in pioneer Scots pine stands growing on heavy metal polluted and non-polluted soils. Soil Biol. Biochem. 2015, 86, 58–66. [Google Scholar] [CrossRef]
- Emmet-Booth, J.P.; Forristal, P.D.; Fenton, O.; Ball, B.C.; Holden, N.M. A review of visual soil evaluation techniques for soil structure. Soil Use Manag. 2016, 32, 623–634. [Google Scholar] [CrossRef]
- Guimarães, R.M.L.; Ball, B.C.; Tormena, C.A. Improvements in the visual evaluation of soil structure. Soil Use Manag. 2011, 27, 395–403. [Google Scholar] [CrossRef]
- European Committee for Standardization (CEN). EN 807 Wood Preservatives. Determination of the Effectiveness against Soft Rotting Micro-Fungi and Other Soil Inhabiting Micro-Organisms; BSI: London, UK, 2001. [Google Scholar]
- European Committee for Standardization (CEN). EN 113 Wood Preservatives-Test Method for Determining the Protective Effectiveness against Wood Destroying Basidiomycetes: Determination of Toxic Values; BSI: London, UK, 1996. [Google Scholar]
- Obataya, E.; Ono, T.; Norimoto, M. Vibrational properties of wood along the grain. J. Mater. Sci. 2000, 35, 2993–3001. [Google Scholar] [CrossRef]
- Ono, T.; Norimoto, M. Study on Young’s Modulus and Internal Friction of Wood in Relation to the Evaluation of Wood for Musical Instruments. Jpn. J. Appl. Phys. 1983, 22, 611–614. [Google Scholar] [CrossRef]
- Sedighi-Gilani, M.; Tingaut, P.; Heeb, M.; Schwarze, F.W.M.R. Influence of moisture on the vibro-mechanical properties of bio-engineered wood. J. Mater. Sci. 2014, 49, 7679–7687. [Google Scholar] [CrossRef] [Green Version]
- Rousk, J.; Brookes, P.C.; Bååth, E. Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biol. Biochem. 2010, 42, 926–934. [Google Scholar] [CrossRef]
- Bárcenas-Moreno, G.; Bååth, E.; Rousk, J. Functional implications of the pH-trait distribution of the microbial community in a re-inoculation experiment across a pH gradient. Soil Biol. Biochem. 2016, 93, 69–78. [Google Scholar] [CrossRef]
- Illman, B.L. Oxidative degradation of wood by brown-rot fungi. In Active Oxygen/Oxidative Stress and Plant Metabolism; Pell, E.J., Steffen, K.L., Eds.; American Society of Plant Physiologists Press: Rockville, MD, USA, 1991; pp. 97–106. [Google Scholar]
- Jellison, J.; Connolly, J.; Goodell, B.; Doyle, B.; Illman, B.; Fekete, F.; Ostrofsky, A. The role of cations in the biodegradation of wood by the brown rot fungi. Int. Biodeterior. Biodegrad. 1997, 39, 165–179. [Google Scholar] [CrossRef]
- Jellison, J.; Smith, K.; Shortle, W. Cation analysis of wood degraded by white- and brown-rot fungi. In International Research Group on Wood Preservation Series; IRG/WP 1552-92; The International Research Group on Wood Protection: Stockholm, Sweden, 1992. [Google Scholar]
- Jellison, J.; Connolly, J.; Smith, K.; Shortle, W. A comparison of inductively coupled plasma spectroscopy and neutron activation analysis for the determination of cation concentrations. In International Research Group on Wood Preservation Series; IRG/WP 10048-93; The International Research Group on Wood Protection: Stockholm, Sweden, 1993. [Google Scholar]
- Lebow, S. Leaching of wood preservative components and their mobility in the environment: Summary of pertinent literature. In Forest Products Laboratory General Technical Report FPL-GTR-93; USDA Forest Service: Washington, DC, USA, 1995; Volume 93, p. 36. [Google Scholar]
- Stevenson, F.J. Organic forms of soil nitrogen. In Humic Chemistry: Genesis, Composition, Reaction; Wiley, J., Ed.; Wiley: Hoboken, NJ, USA, 1994; pp. 59–95. [Google Scholar]
- Trevisan, S.; Francioso, O.; Quaggiotti, S.; Nardi, S. Humic substances biological activity at the plant-soil interface: From environmental aspects to molecular factors. Plant Signal Behav. 2010, 5, 635–643. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, W.W.; Dietz, M. Fungi causing above ground wood decay in structures in California. Wood Fiber Sci. 1997, 29, 291–298. [Google Scholar]
- Brown, R.E. Electric Power Distribution Reliability, 2nd ed.; Marcel Dekker: New York, NY, USA, 2009. [Google Scholar]
- Yang, Z.; Jiang, Z.; Hse, C.Y.; Liu, R. Assessing the impact of wood decay fungi on the modulus of elasticity of slash pine (Pinus elliottii) by stress wave non-destructive testing. Int. Biodeterior. Biodegrad. 2017, 117, 123–127. [Google Scholar] [CrossRef]
- Goodell, B.; Daniel, G.; Liu, J.; Mott, L.; Frank, R. Decay resistance and microscopic analysis of wood-cement composites. For. Prod. J. 1997, 47, 75–80. [Google Scholar]
Brown Rot Fungi | Fungal ID * |
---|---|
Antrodia serialis | LT577949 |
Fibroporia vaillantii | LT577950 |
Serpula himantioides | LT577951 |
Gloeophyllum sepiarium | LT577952 |
Rhodonia placenta | Empa 45 1 |
Sample | Treatment (HA%) | Initial Cu in Wood (mg g−1) | Final Cu in Wood (mg g−1) | Cu Leached (%) | Cu released in Water (mg L−1) |
---|---|---|---|---|---|
Control | 0.000 | 0.00 ± 0.00 | 0.00 (aA) ± 0.00 | - | 0.00 (aA) ± 0.00 |
0.005 | 0.00 ± 0.00 | 0.00 (aA) ± 0.00 | - | 0.00 (aA) ± 0.00 | |
0.020 | 0.00 ± 0.00 | 0.00 (aA) ± 0.00 | - | 0.00 (aA) ± 0.00 | |
CC | 0.000 | 5.13 ± 0.16 | 4.60 (abB) ± 0.11 | 10.27 | 17.36 (aB) ± 0.83 |
0.005 | 3.85 ± 0.27 | 2.99 (cB) ± 0.21 | 22.27 | 19.62 (bcB) ± 0.54 | |
0.020 | 4.37 ± 0.31 | 4.01 (aB) ± 0.30 | 8.23 | 26.82 (cB) ± 1.19 | |
CCB | 0.000 | 6.25 ± 0.34 | 5.73 (abC) ± 0.28 | 8.42 | 29.62 (aC) ± 1.16 |
0.005 | 6.21 ± 0.22 | 5.42 (bC) ± 0.07 | 12.67 | 33.61 (abCB) ± 1.21 | |
0.020 | 5.61 ± 0.15 | 5.47 (cAB) ± 0.19 | 2.44 | 29.85 (aB) ± 1.00 | |
Cu-HDO | 0.000 | 6.75 ± 0.17 | 5.39 (aD) ± 0.14 | 20.06 | 130.95 (aD) ± 1.53 |
0.005 | 6.65 ± 0.12 | 5.57 (abBC) ± 0.15 | 16.20 | 143.34 (abD) ± 3.61 | |
0.020 | 6.65 ± 0.26 | 5.69 (bC) ± 0.29 | 14.44 | 123.23 (aC) ± 1.82 | |
ACQ | 0.000 | 5.39 ± 0.26 | 4.76 (aB) ± 0.33 | 11.70 | 53.96 (aCD) ± 1.28 |
0.005 | 5.38 ± 0.23 | 4.23 (bcB) ± 0.27 | 21.49 | 65.44 (abC) ± 0.94 | |
0.020 | 5.91 ± 0.15 | 4.74 (bCD) ± 0.47 | 19.90 | 71.88 (bD) ± 0.89 |
Wood Pole Treatment | Weight Loss (%) | Moisture Content (%) |
---|---|---|
Controls | 29.9 (a) ± 7.9 | 101.3 (a) ± 4.6 |
CC | 20.4 (ab) ± 3.5 | 113.7 (ab) ± 4.1 |
ACQ | 5.3 (c) ± 1.1 | 113.4 (ab) ± 2.3 |
CCB | 0.0 (c) ± 4.7 | 133.2 (ac) ± 7.3 |
Cu-HDO | 10.8 (cb) ± 1.8 | 122.9 (ab) ± 10.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribera, J.; Michel, E.; Schwarze, F.W.M.R. Influence of Soil Characteristics on Wood Biodeterioration by Brown Rot Fungi. Appl. Sci. 2020, 10, 8837. https://doi.org/10.3390/app10248837
Ribera J, Michel E, Schwarze FWMR. Influence of Soil Characteristics on Wood Biodeterioration by Brown Rot Fungi. Applied Sciences. 2020; 10(24):8837. https://doi.org/10.3390/app10248837
Chicago/Turabian StyleRibera, Javier, Elisabeth Michel, and Francis W. M. R. Schwarze. 2020. "Influence of Soil Characteristics on Wood Biodeterioration by Brown Rot Fungi" Applied Sciences 10, no. 24: 8837. https://doi.org/10.3390/app10248837
APA StyleRibera, J., Michel, E., & Schwarze, F. W. M. R. (2020). Influence of Soil Characteristics on Wood Biodeterioration by Brown Rot Fungi. Applied Sciences, 10(24), 8837. https://doi.org/10.3390/app10248837