Mycoremediation of Soils Polluted with Trichloroethylene: First Evidence of Pleurotus Genus Effectiveness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Fungal Material
2.2. Soil
2.3. Liquid Media Growth Assay
2.4. Mycodegradation of TCE in Soil
2.5. Statistical Analysis
3. Results
3.1. Liquid Medium Growth Assay
3.2. Mycoremediation of TCE in Soil
4. Discussion
4.1. Liquid Medium Growth Assay
4.2. Mycoremediation of TCE in Soil
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rojas, R.V.; Achouri, M.; Maroulis, J.; Caon, L. Healthy soils: A prerequisite for sustainable food security. Environ. Earth Sci. 2016, 75, 1–10. [Google Scholar] [CrossRef]
- European Commission Document on Risk Assessment. Technical Guidance Document on Risk Assessment Part II; Institute for Health and Consumer Protection: Ispra, Italy, 2003; p. 337. [Google Scholar] [CrossRef]
- McCarty, P.L.; Criddle, C.S.; Vogel, T.M. Retrospective on microbial transformations of halogenated organics. Environ. Sci. Process Impacts 2020, 22, 512–517. [Google Scholar] [CrossRef]
- Epa, U. Title 40–Protection of Environment. Appendix A to Part 423–126 Priority Pollutants. Available online: https://www.govinfo.gov/content/pkg/CFR-2014-title40-vol29/xml/CFR-2014-title40-vol29-part423-appA.xml (accessed on 13 October 2020).
- Guha, N.; Loomis, D.; Grosse, Y.; Lauby-Secretan, B.; Ghissassi, F.; El Bouvard, V.; Benbrahim-Tallaa, L.; Baan, R.; Mattock, H.; Straif, K. Carcinogenicity of trichloroethylene, tetrachloroethylene, some other chlorinated solvents, and their metabolites. Lancet Oncol. 2012, 13, 1192–1193. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Meng, Q.; Liu, Y.; Tuyiringire, D.; Chen, Z.; Liang, S. Trichloroethylene inhibits nitrogen transformation and microbial community structure in Mollisol. Ecotoxicology 2020, 29, 801–813. [Google Scholar] [CrossRef]
- Moreno, B.; Nogales, R.; Mac Ci, C.; Masciandaro, G.; Benitez, E. Microbial eco-physiological profiles to estimate the biological restoration of a trichloroethylene-contaminated soil. Ecol. Indic. 2011, 11, 1563–1571. [Google Scholar] [CrossRef]
- Weeks, K.R.; Bruell, C.J.; Mohanty, N.R. Use of Fenton’s reagent for the degradation of TCE in aqueous systems and soil slurries. Soil Sediment Contam. 2000, 9, 331–345. [Google Scholar] [CrossRef]
- Chen, G.; Hoag, G.E.; Chedda, P.; Nadim, F.; Woody, B.A.; Dobbs, G.M. The mechanism and applicability of in situ oxidation of trichloroethylene with Fenton’s reagent. J. Hazard. Mat. 2001, 87, 171–186. [Google Scholar] [CrossRef]
- Jung, J.; Yoon, J.H.; Chung, H.H.; Lee, M.J. Comparative study of H2O2 and O3 effects on radiation treatment of TCE and PCE. Chemosphere 2003, 51, 881–885. [Google Scholar] [CrossRef]
- Gómez-Toribio, V.; García-Martín, A.B.; Martínez, M.J.; Martínez, Á.T.; Guillén, F. Enhancing the production of hydroxyl radicals by Pleurotus eryngii via quinone redox cycling for pollutant removal. Appl. Environ. Microbiol. 2009, 75, 3954–3962. [Google Scholar] [CrossRef] [Green Version]
- Marco-Urrea, E.; Aranda, E.; Caminal, G.; Guillén, F. Induction of hydroxyl radical production in Trametes versicolor to degrade recalcitrant chlorinated hydrocarbons. Bioresour. Technol. 2009, 100, 5757–5762. [Google Scholar] [CrossRef]
- Major, D.W.; Mc Master, M.L.; Cox, E.E.; Edwards, E.A.; Dworatzek, S.M.; Hendrickson, E.R.; Starr, M.G.; Payne, J.A.; Buonamici, L.W. Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ. Sci. Technol. 2002, 36, 5106–5116. [Google Scholar] [CrossRef]
- Schumacher, W.; Holliger, C. The proton/electron ratio of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethene in dehalobacter restrictus. J. Bacteriol. 1996, 178, 2328–2333. [Google Scholar] [CrossRef] [Green Version]
- Maymo-gatell, X.; Chien, Y.; Gossett, J.M.; Zinder, S.H. Isolation of a Bacterium That Reductively Dechlorinates Tetrachloroethene to Ethene Author (s): Xavier Maymó-Gatell, Yueh-tyng Chien, James M. Gossett and Stephen H. Zinder Published by: American Association for the Advancement of Science Stable UR. Science 2016, 276, 1568–1571. [Google Scholar] [CrossRef]
- Arp, D.J.; Yeager, C.M.; Hyman, M.R. Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation 2001, 12, 81–103. [Google Scholar] [CrossRef]
- Shukla, A.K.; Upadhyay, S.N.; Dubey, S.K. Current trends in trichloroethylene biodegradation: A review. Crit. Rev. Biotechnol. 2014, 34, 101–114. [Google Scholar] [CrossRef]
- Chun, S.C.; Muthu, M.; Hasan, N.; Tasneem, S.; Gopal, J. Mycoremediation of PCBs by Pleurotus ostreatus: Possibilities and prospects. Appl. Sci. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- García-Delgado, C.; Yunta, F.; Eymar, E. Bioremediation of multi-polluted soil by spent mushroom (Agaricus bisporus) substrate: Polycyclic aromatic hydrocarbons degradation and Pb availability. J. Hazard. Mat. 2015, 300, 281–288. [Google Scholar] [CrossRef]
- Di Gregorio, S.; Becarelli, S.; Siracusa, G.; Ruffini Castiglione, M.; Petroni, G.; Masini, G.; Gentini, A.; De Lima e Silva, M.R.; Lorenzi, R. Pleurotus ostreatus spent mushroom substrate for the degradation of polycyclic aromatic hydrocarbons: The case study of a pilot dynamic biopile for the decontamination of a historically contaminated soil. J. Chem. Technol. Biotechnol. 2016, 91, 1654–1664. [Google Scholar] [CrossRef]
- Křesinová, Z.; Linhartová, L.; Filipová, A.; Ezechiáš, M.; Mašín, P.; Cajthaml, T. Biodegradation of endocrine disruptors in urban wastewater using Pleurotus ostreatus bioreactor. N. Biotechnol. 2018, 43, 53–61. [Google Scholar] [CrossRef]
- Mayans, B.; Camacho-arévalo, R.; García-delgado, C. An assessment of Pleurotus ostreatus to remove sulfonamides, and its role as a biofilter based on its own spent mushroom substrate. Environ. Sci. Pollut. Res. 2021, 28, 7032–7042. [Google Scholar] [CrossRef]
- Lucas, D.; Badia-Fabregat, M.; Vicent, T.; Caminal, G.; Rodríguez-Mozaz, S.; Balcázar, J.L.; Barceló, D. Fungal treatment for the removal of antibiotics and antibiotic resistance genes in veterinary hospital wastewater. Chemosphere 2016, 152, 301–308. [Google Scholar] [CrossRef]
- Prieto, A.; Möder, M.; Rodil, R.; Adrian, L.; Marco-Urrea, E. Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products. Bioresour. Technol. 2011, 102, 10987–10995. [Google Scholar] [CrossRef] [PubMed]
- Marco-Urrea, E.; Pérez-Trujillo, M.; Vicent, T.; Caminal, G. Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 2009, 74, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Marco-Urrea, E.; Parella, T.; Gabarrell, X.; Caminal, G.; Vicent, T.; Adinarayana Reddy, C. Mechanistics of trichloroethylene mineralization by the white-rot fungus Trametes versicolor. Chemosphere 2008, 70, 404–410. [Google Scholar] [CrossRef]
- Yadav, J.S.; Bethea, C.; Reddy, C.A. Mineralization of trichloroethylene (TCE) by the white rot fungus Phanerochaete chrysosporium. Bull. Environ. Contam. Toxicol. 2000, 65, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Ahammad, S.Z.; Gomes, J.; Sreekrishnan, T.R. Wastewater treatment for production of H2S-free biogas. J. Chem. Technol. Biotechnol. 2008, 83, 1163–1169. [Google Scholar] [CrossRef]
- Wells, J.M.; Boddy, L.; Evans, R. Carbon translocation in mycelial cord systems of Phanerochaete velutina (DC: Pers.) Parmasto. New Phytol. 1995, 129, 467–476. [Google Scholar] [CrossRef]
- Baldrian, P. Wood-inhabiting ligninolytic basidiomycetes in soils: Ecology and constraints for applicability in bioremediation. Fungal Ecol. 2008, 1, 4–12. [Google Scholar] [CrossRef]
- Marco-Urrea, E.; Reddy, C.A. Microbial Degradation of Xenobiotics; Springer: Heidelberg/Berlin, Germany, 2012; ISBN 978-3-642-23788-1. [Google Scholar]
- Ministry of the Presidency, RD 9/2005 of January 14, for Establishing the Relationship of Potentially Soil Polluting Activities and the Criteria and Standards for the Declaration of Contaminated Soils. 2005. Available online: https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/suelos-contaminados/09047122800b7aff_tcm30-194664.pdf (accessed on 28 January 2021). (In Spanish).
- Adam, G.; Duncan, H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem. 2001, 33, 943–951. [Google Scholar] [CrossRef] [Green Version]
- Kandeler, E.; Gerber, H. Short–Term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 1988, 6, 68–72. [Google Scholar] [CrossRef]
- Trevors, J.T. Dehydrogenase activity in soil: A comparison between the INT and TTC assay. Soil Biol. Biochem. 1984, 16, 673–674. [Google Scholar] [CrossRef]
- García-Delgado, C.; Eymar, E.; Camacho-Arévalo, R.; Petruccioli, M.; Crognale, S.; D’Annibale, A. Degradation of tetracyclines and sulfonamides by stevensite- and biochar-immobilized laccase systems and impact on residual antibiotic activity. J. Chem. Technol. Biotechnol. 2018, 93, 3394–3409. [Google Scholar] [CrossRef]
- Wariishi, H.; Valli, K.; Gold, M.H. Manganese (II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J. Biol. Chem. 1992, 267, 23688–23695. [Google Scholar] [CrossRef]
- Zivanovic, S.; Busher, R.W.; Kim, K.S. Textural changes in mushrooms (Agaricus bisporus) associated with tissue ultrastructure and composition. J. Food Sci. 2000, 65, 1404–1408. [Google Scholar] [CrossRef]
- D’Annibale, A.; Rosetto, F.; Leonardi, V.; Federici, F.; Petruccioli, M. Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Appl. Environ. Microbiol. 2006, 72, 28–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrasco, J.; García-Delgado, C.; Lavega, R.; Tello, M.L.; De Toro, M.; Barba-Vicente, V.; Rodríguez-Cruz, M.S.; Sánchez-Martín, M.J.; Pérez, M.; Preston, G.M. Holistic assessment of the microbiome dynamics in the substrates used for commercial champignon (Agaricus bisporus) cultivation. Microb. Biotechnol. 2020, 13, 1933–1947. [Google Scholar] [CrossRef] [PubMed]
- Vogel, T.M.; Criddle, C.S.; McCarty, P.L. ES Critical Reviews: Transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 1987, 21. [Google Scholar] [CrossRef]
Chemical Analysis | Microbial Enzymatic Analysis (U g−1) | ||||||
---|---|---|---|---|---|---|---|
pH H2O | pH KCl | E.C. (µS cm−1) | O.M. (%) | N Kjeldhal (%) | Hydrolase | Dehydrogenase | Urease |
8.14 ± 0.01 | 7.3 ± 0.2 | 449 ± 2 | 3.1 ± 0.2 | 0.20 ± 0.03 | 1.5 ± 0.6 | 11 ± 1 | 3142 ± 28 |
Week 1 | Week 2 | Week 3 | Week 4 | |
---|---|---|---|---|
P. ostreatus | 12.8 ± 6.8 | 2.6 ± 1.5 | 4.7 ± 2.9 | 3.1 ± 1.9 |
P. eryngii | 10.5 ± 4.8 | n.d. | 4.2 ± 1.5 | 2.4 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayans, B.; Camacho-Arévalo, R.; García-Delgado, C.; Alcántara, C.; Nägele, N.; Antón-Herrero, R.; Escolástico, C.; Eymar, E. Mycoremediation of Soils Polluted with Trichloroethylene: First Evidence of Pleurotus Genus Effectiveness. Appl. Sci. 2021, 11, 1354. https://doi.org/10.3390/app11041354
Mayans B, Camacho-Arévalo R, García-Delgado C, Alcántara C, Nägele N, Antón-Herrero R, Escolástico C, Eymar E. Mycoremediation of Soils Polluted with Trichloroethylene: First Evidence of Pleurotus Genus Effectiveness. Applied Sciences. 2021; 11(4):1354. https://doi.org/10.3390/app11041354
Chicago/Turabian StyleMayans, Begoña, Raquel Camacho-Arévalo, Carlos García-Delgado, Cynthia Alcántara, Norbert Nägele, Rafael Antón-Herrero, Consuelo Escolástico, and Enrique Eymar. 2021. "Mycoremediation of Soils Polluted with Trichloroethylene: First Evidence of Pleurotus Genus Effectiveness" Applied Sciences 11, no. 4: 1354. https://doi.org/10.3390/app11041354
APA StyleMayans, B., Camacho-Arévalo, R., García-Delgado, C., Alcántara, C., Nägele, N., Antón-Herrero, R., Escolástico, C., & Eymar, E. (2021). Mycoremediation of Soils Polluted with Trichloroethylene: First Evidence of Pleurotus Genus Effectiveness. Applied Sciences, 11(4), 1354. https://doi.org/10.3390/app11041354