Contribution of GIS and Geochemical Proxies to Improving Habitat Identification and Delimitation for the Natura 2000 Network: The Case of Coastal Lagoons in Galicia (NW Iberian Peninsula)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Delimitation of Temporal Changes in Coastal Lakes
- A high resolution (1 m) Digital Surface Model (DSM) of the lake basin was generated using the most recent LiDAR data (from 2015 [20]).
- The terrain ruggedness was determined using the Riley formulation [21]. This parameter was then used in the delimitation by considering the mean Topographic Ruggedness Index (TRI) as threshold.
- The surface area was corrected by analysis of aerial images to adapt the lake space to the characteristics of each zone in 2017.
- Remote sensing techniques were used to analyze the characteristics of the areas, such as the tone or the element size, for final delimitation of the spaces.
2.2.2. Geochemical Analysis of Water and Sediments
3. Results and Discussion
3.1. Errors in Designation of Habitats in Annex I of the Habitats Directive
3.2. Official Cartography: Errors and Inconsistences in Habitat Delimitation and Designation
3.3. Water and Sediment Composition
3.3.1. Water Composition and Quality
3.3.2. Sedimentary Composition
3.4. Delimitation of Coastal Lakes
3.4.1. Coastal Lagoons—Louro
3.4.2. Coastal Lagoons—Vixán
3.4.3. Eutrophic Lakes—Xuño
3.4.4. Eutrophic Lakes—Bodeira
3.5. Anomalies in Elaboration of the Natura 2000 Network
3.6. Developmental Trends
3.7. New Technologies in Ecosystem Delimitation
4. Conclusions
- Only two of the lakes (Louro and Vixán) can be considered Coastal lagoons (habitat 1150). Both Bodeira and Xuño are natural eutrophic lakes (habitats 3150).
- The presence, designation and distribution of the habitats defined by PDRN should be revised in depth. Each lake is per se a functional unit and habitat, formed by different environments such as open waters, channels, salt marshes and reedbeds. Classifying each unit as a different habitat contradicts the philosophy of the Habitats Directive and complicates management of the ecosystems involved.
- The Vixán, Xuño, and Bodeira lakes are characterized by advanced states of eutrophication and poor water quality. Restoration of hydraulic functionality should be investigated further.
- The expansion of alluvial forest is an example of the rapid evolution of these systems in relation to halting anthropogenic pressure.
- The delimitation of lakes should be revised by using technologies such as LiDAR and remote sensing.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Basset, A.; Elliott, M.; West, R.J.; Wilson, J.G. Estuarine and lagoon biodiversity and their natural goods and services. Estuar. Coast. Shelf Sci. 2013, 132, 1–4. [Google Scholar] [CrossRef]
- Brito, A.; Newton, A.; Tett, P.; Fernandes, T.F. Sediment and waternutrients and microalgae in a coastal shallow lagoon, Ria Formosa (Portugal): Implications for the Water Framework Directive. J. Environ. Monit. 2010, 12, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Kirpotin, S.N.; Berezin, A.; Bazanov, V.; Polishchuk, Y.; Vorobiov, S.; Mironycheva-Tokoreva, N.; Kosykh, N.; Volkova, I.; Dupre, B.; Pokrovsky, O.; et al. Western Siberia wetlands as indicator and regulator of climate change on the global scale. Int. J. Environ. Stud. 2009, 66, 409–421. [Google Scholar] [CrossRef]
- Mitsch, W.; Gosselink, J. Wetlands; Van Nostrand Reinhold: New York, NY, USA, 1993. [Google Scholar]
- García, G.; Muñoz-Vera, A. Characterization and evolution of the sediments of a Mediterranean coastal lagoon located next to a former mining area. Mar. Pollut. Bull. 2015, 100, 249–263. [Google Scholar] [CrossRef] [Green Version]
- Garrido, J.; Pérez-Bilbao, A.; Benetti, C.J. Biodiversity and Conservation of Coastal Lagoons. In Ecosystems Biodiversity; Grillo, O., Venora, G., Eds.; InTech: Vienna, Austria, 2011; pp. 1–28. [Google Scholar]
- Casado de Otaola, S.; Montes del Olmo, C. Guía de los Lagos y Humedales de España; Reyero, J.M., Ed.; Reyero Ed: Madrid, Spain, 1995. [Google Scholar]
- Gattenlöhner, U.; Hammerl-Resch, M.; Jantschke, S. Restauración de Humedales—Manejo Sostenible de Humedales y Lagos Someros; Global Nature Fund (GNF): Radolfzell, Germany, 2004. [Google Scholar]
- Commission of the European Communities Interpretation Manual of European Union Habitats; Office for Official Publications of the European Communities: Luxembourg, 2013.
- Commission of the European Communities Managing Natura 2000 Sites. The Provisions of Article 6 of the “Habtitas” Directive 92/43/EEC; Office for Official Publications of the European Communities: Luxembourg, 2000; ISBN 9282890481. [Google Scholar]
- POLGalicia. Plan. de Ordenación do Litoral de Galicia; Consellaría de Medio Ambiente, Territorio e Infraestruturas: Santiago de Compostela, Spain, 2010. [Google Scholar]
- Perez-Alberti, A.; Gomez-Pazo, A. The Rocky Coasts of Northwest Spain. In The Spanish Coastal Systems; Springer: Cham, Switzerland, 2019; pp. 27–47. ISBN 9783319931692. [Google Scholar]
- Evans, D. The Habitats of the European Union Habitats Directive. Biol. Environ. Proc. R. Irish Acad. 2006, 106, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Haslett, S.K. Coastal Systems; University of Wales Press: Cardiff, UK, 2016; ISBN 178316901X. [Google Scholar]
- Fraga-Santiago, P.; Gómez-Pazo, A.; Pérez-Alberti, A.; Montero, P.; Otero Pérez, X.L. Trends in the Recent Evolution of Coastal Lagoons and Lakes in Galicia (NW Iberian Peninsula). J. Mar. Sci. Eng. 2019, 7, 272. [Google Scholar] [CrossRef] [Green Version]
- Bao, R.; Alonso, A.; Delgado, C.; Pagés, J.L.L. Identification of the main driving mechanisms in the evolution of a small coastal wetland (Traba, Galicia, NW Spain) since its origin 5700 cal yr BP. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 247, 296–312. [Google Scholar] [CrossRef] [Green Version]
- Sáez, A.; Carballeira, R.; Pueyo, J.J.; Vázquez-Loureiro, D.; Leira, M.; Hernández, A.; Valero-Garcés, B.L.; Bao, R. Formation and evolution of back-barrier perched lakes in rocky coasts: An example of a Holocene system in north-west Spain. Sedimentology 2018, 65, 1891–1917. [Google Scholar] [CrossRef] [Green Version]
- González-Villanueva, R.; Pérez-Arlucea, M.; Alejo, I.; Goble, R. Climatic-related factors controlling the sedimentary architecture of a Barrier-Lagoon complex in the context of the Holocene transgression. J. Coast. Res. 2015, 627–631. [Google Scholar]
- Carballeira, A.; Devesa, C.; Retuerto, R.; Santillán, E.; Ucieda, F. Bioclimatología de Galicia; Fundación Pedro Barrié de la Maza, Conde de Fenosa: A Coruña, Spain, 1983; ISBN 84-85728-27. [Google Scholar]
- IGN Instituto Geográfico Nacional. 2020. Available online: https://www.centrodedescargas.cnig.es/ (accessed on 21 October 2020).
- Riley, S.J.; DeGloria, S.D.; Elliot, R. A Terrain Ruggedness Index that Qauntifies Topographic Heterogeneity. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Leventhal, J.S. Carbon-sulfur plots to show diagenetic and epigenetic sulfidation in sediments. Geochim. Cosmochim. Acta 1995, 59, 1207–1211. [Google Scholar] [CrossRef]
- Berner, R.A. Burial of organic carbon and pyrite sulfur in the modem ocean: Its geochemical and environmental significance. Amer. J. Sci. 1982, 282, 451–473. [Google Scholar] [CrossRef]
- Calvert, S.E.; Karlin, R.E. Relationships between sulphur, organic carbon, and iron in the modern sediments of the Black Sea. Geochim. Cosmochim. Acta 1991, 55, 2483–2490. [Google Scholar] [CrossRef]
- Otero Pérez, X.L. Monitorización de los Procesos Biogeoquímicos en las Lagunas Litorales en Relación con su Calidad Ambiental y Respuesta Al Cambio Climático; Xunta de Galicia: Santiago de Compostela, Spain, 2011. [Google Scholar]
- Otero, X.L.; Ferreira, T.O.; Huerta-Díaz, M.A.; Partiti, C.S.M.; Souza, V.; Vidal-Torrado, P.; Macías, F. Geochemistry of iron and manganese in soils and sediments of a mangrove system, Island of Pai Matos (Cananeia–SP, Brazil). Geoderma 2009, 148, 318–335. [Google Scholar] [CrossRef]
- Evans, D. Building the European Union’s Natura 2000 network. Nat. Conserv. 2012, 1, 11–26. [Google Scholar] [CrossRef]
- Rincón, V.; Velázquez, J.; Gutiérrez, J.; Sánchez, B.; Hernando, A.; García-Abril, A.; Santamaría, T.; Sánchez-Mata, D. Evaluating European conservation areas and proposal of new zones of conservation under the habitats directive. application to Spanish territories. Sustainability 2019, 11, 398. [Google Scholar] [CrossRef] [Green Version]
- Pontevedra-Pombal, X.; Souto, M.; García-Rodeja, E. Identificación, Clasificación e Localización dos Tipos de Hábitats de Turbeiras Correspondentes ao Grupo 71 (Turbeiras Ácidas de Esfagnos) do Anexo I da Directiva 92/43/CEE Presentes en Galicia: Áreas de Ampliación da Rede; Editorial Compostela: Santiago de Compostela, Spain, 2019. [Google Scholar]
- IBADER. Os Hábitats de Interese Comunitario en Galicia. Fichas Descritivas. Monografías do IBADER.; Editorial Compostela: Santiago de Compostela, Spain, 2008. [Google Scholar]
- Otero, X.L.; Pérez-Alberti, A.; Souto, M. Avaliación da Presenza en Galicia do Hábitat de Interese Comunitario Nat2000 2150* Dunas Fixas Descalcificadas Atlánticas (Calluno-Ulicetea); Editorial Compostela: Santiago de Compostela, Spain, 2018. [Google Scholar]
- Evans, D. Interpreting the habitats of Annex I: Past, present and future. Acta Bot. Gall. 2010, 157, 677–686. [Google Scholar] [CrossRef] [Green Version]
- Sumares, D.; Fidélis, T. Natura 2000 and the narrative nature of nature: A case for critical discourse analysis. J. Integr. Environ. Sci. 2011, 8, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Fraga-Santiago, P. Evolución Morfodinámica y Geoquímica de Diferentes Sistemas Lacustres del Litoral de Galicia; Universidade de Santiago de Compostela: Santiago de Compostela, Spain, 2020. [Google Scholar]
- De Sousa, R.O.; Vahl, L.C.; Otero, X.L. Química e Mineral do solo. Parte II-Aplicações. Viçosa, MG, Soc. Bras. Ciência do Solo. In Química de Solos Alagados; Socidade Brasileira de Ciência do Solo: Berlin, Germany, 2009; pp. 485–528. [Google Scholar]
- Berner, R.A.; Raiswell, R. C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 1984, 12, 365. [Google Scholar] [CrossRef]
- Ríos, S.; Salvador, F. 6220 Pastizales xerofíticos mediterráneos de vivaces y anual. In Bases Ecológicas Preliminares Para la Conservación de los Tipos de Hábitat de Interés Comunitario en España; VV.AA., Ed.; Ministerio de Medio Ambiente, y Medio Rural y Marino: Madrid, Spain, 2009; p. 88. [Google Scholar]
- Bartolomé, C.; Álvarez, J.; Vaquero, J.; Costa, M.; Casermeiro, M.A.; Giraldo, J.; Zamora, J. Los Tipos de Hábitat de Interés Comunitario de España: Guía Básica; Ministerio de Medio Ambiente, Dirección General para la Biodiversidad: Madrid, Spain, 2005; ISBN 8480146273. [Google Scholar]
- Baztan, J.; Chouinard, O.; Jorgensen, B.; Tett, P.; Vanderlinden, J.-P.; Vasseur, L. Coastal Zones: Solutions for the 21st Century; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 0128027592. [Google Scholar]
- Corbelle Rico, E.; Crecente Maseda, R. Evolución histórica de la Superficie Agrícola Utilizada en Galicia (1962–2006). Integración de fuentes estadísticas y cartográficas. Econ. Agrar. Recur. Nat. 2011, 9, 183. [Google Scholar] [CrossRef] [Green Version]
- Corbelle Rico, E.; Crecente Maseda, R. Urbanización, forestación y abandono. Cambios recientes en el paisaje de Galicia, 1985–2005. Rev. Galega Econ. 2014, 23, 35–52. [Google Scholar]
- REDIAM. Áreas Pantanosas Calcáreas con Cladium Mariscus y Especies de Caricion Davallianae (Turberas Calcáreas del Cladium Mariscus y con Especies del Caricion Davallianae); Tragsa: Madrid, Spain, 2020. [Google Scholar]
- The European Environment Agency. Calcareous Fens with Cladium mariscus and Species of the Caricion Devallianae; The European Environment Agency: Copenhagen, Danmark, 2020.
- García Rodeja, E.; Fraga Vila, M.I. Bases ecológicas Prelim. para la Conserv. Los Tipos Hábitat Interés Comunitario en España. In 7210 Áreas Pantanosas Calcáreas con Cladium mariscus y Especies de Caricion Davallianae (*); VV.AA., Ed.; Tragsa: Madrid, Spain, 2009; p. 61. [Google Scholar]
- Burgess, N.; Ward, D.; Hobbs, R.; Bellamy, D. Reedbeds, fens and acid bogs. In Managing Habitats for Conservation; Cambridge University Press: Cambridge, UK, 1995; pp. 149–196. [Google Scholar]
- Burgess, N.D.; Evans, C.E. The Management of Reedbeds for Birds; RSPB: Bedfordshire, UK, 1989. [Google Scholar]
- Hawke, C.J.; José, P.V. English Nat. In Reedbed Management for Commercial and Wildlife Interests; RSPB: Bedfordshire, UK, 1996. [Google Scholar]
- Poulin, B.; Lefebvre, G.; Mauchamp, A. Habitat requirements of passerines and reedbed management in southern France. Biol. Conserv. 2002, 107, 315–325. [Google Scholar] [CrossRef]
- Trnka, A.; Peterková, V.; Prokop, P.; Batáry, P. Management of reedbeds: Mosaic reed cutting does not affect prey abundance and nest predation rate of reed passerine birds. Wetl. Ecol. Manag. 2014, 22, 227–234. [Google Scholar] [CrossRef]
- Souza, J.A.; Lorenzo, M. Fluctuaciones poblacionales, importancia de las localidades y factores que influyen en los patos y fochas invernantes en Galicia. In Proceedings of the Actas do Primeiro Congreso de Ornitoloxía de Galicia; Universidade de Santiago de Compostela, Ed.; Universidade de Santiago de Compostela: Santiago de Compostela, Spain, 1991; pp. 35–67. [Google Scholar]
- Vilas, F.; Miralles, A.A.; Ramos, A.; Sopeña, A.; Rey, L.; Nombela, M.A. El complejo de playa-lagoon de Corrubedo y los submedios característicos. Galicia, NW. España. Acta Geológica Hispánica 1986, 21–22, 233–243. [Google Scholar]
- Otero, X.L.; Macías, F. Spatial and seasonal variation in heavy metals in interstitial water of salt marsh soils. Environ. Pollut. 2002, 120, 183–190. [Google Scholar] [CrossRef]
- Silva, J.; Toland, J.; Eldrifge, J.; Potter, J.; Jones, S.; Nottingham, S.; Severon, M.; Geater, M.; Jones, W.; Martínez, E. LIFE Nature LIFE and Coastal Habitats; Merciol, J.-C., Ed.; Publications Office of the European Union: Luxembourg, 2017; ISBN 9789279642098. [Google Scholar]
- Kovac, M.; Hladnik, D.; Kutnar, L. Biodiversity in (the Natura 2000) forest habitats is not static: Its conservation calls for an active management approach. J. Nat. Conserv. 2018, 43, 250–260. [Google Scholar] [CrossRef]
- Vanden Borre, J.; Paelinckx, D.; Mücher, C.A.; Kooistra, L.; Haest, B.; De Blust, G.; Schmidt, A.M. Integrating remote sensing in Natura 2000 habitat monitoring: Prospects on the way forward. J. Nat. Conserv. 2011, 19, 116–125. [Google Scholar] [CrossRef]
- Bässler, C.; Stadler, J.; Müller, J.; Förster, B.; Göttlein, A.; Brandl, R. LiDAR as a rapid tool to predict forest habitat types in Natura 2000 networks. Biodivers. Conserv. 2011, 20, 465–481. [Google Scholar] [CrossRef]
- Appeaning Addo, K.; Jayson-Quashigah, P.N.; Codjoe, S.N.A.; Martey, F. Drone as a tool for coastal flood monitoring in the Volta Delta, Ghana. Geoenviron. Disasters 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Green, D.R.; Hagon, J.J.; Gómez, C.; Gregory, B.J. Using Low-Cost UAVs for Environmental Monitoring, Mapping, and Modelling: Examples From the Coastal Zone; Academic Press: Cambridge, MA, USA, 2019; ISBN 9780128104736. [Google Scholar]
- Long, N.; Millescamps, B.; Guillot, B.; Pouget, F.; Bertin, X. Monitoring the topography of a dynamic tidal inlet using UAV imagery. Remote Sens. 2016, 8, 387. [Google Scholar] [CrossRef] [Green Version]
- Scarelli, F.M.; Sistilli, F.; Fabbri, S.; Cantelli, L.; Barboza, E.G.; Gabbianelli, G. Seasonal dune and beach monitoring using photogrammetry from UAV surveys to apply in the ICZM on the Ravenna coast (Emilia-Romagna, Italy). Remote Sens. Appl. Soc. Environ. 2017, 7, 27–39. [Google Scholar] [CrossRef]
Code | Definition |
---|---|
1150 | Coastal lagoons |
7210 | Calcareous fens with Cladium mariscus and species of the Caricion davallianae |
2130 | Fixed coastal dunes with herbaceous vegetation (grey dunes) |
2150 | Atlantic decalcified fixed dunes (Calluno-Ulicetea) |
3150 | Natural eutrophic lake with Magnopotamion or Hydrocharition–type vegetation |
5230 | Arborescent matorral with Laurus nobilis |
6220 | Pseudo-steppe with grasses and annuals of the Thero-Brachypodietea |
91E0 | Alluvial forests with Alnus glutinosa and Fraxinus excelsior |
Site | pH | EC | DBO5 | NH4+ | NO2− | NO3− | PO43− |
---|---|---|---|---|---|---|---|
Water | |||||||
dS cm−1 | mg L−1 | ||||||
Louro (n = 15) | 8.3 ± 0.8 | 23.3 ± 10 | 29 ± 27 | 0.30 ± 0.22 | 0.08 ± 0.04 | 2.19 ± 1.24 | 0.10 ± 0.06 |
Vixán (n = 18) | 8.2 ± 0.9 | 10.1 ± 0.7 | 10 ± 9.4 | 0.09 ± 0.04 | 25.7 ± 37.4 | 2.34 ± 1.37 | 0.18 ± 0.23 |
Xuño (n = 18) | 6.6 ± 0.3 | 0.46 ± 0.2 | 6.2 ± 6.1 | 0.08 ± 0.10 | 0.03 ± 0.02 | 1.96 ± 2.23 | 0.10 ± 0.20 |
Bodeira (n = 12) | 7.2 ± 0.2 | 0.41 ± 0.1 | 9.1 ± 11 | 0.08 ± 0.12 | 0.08 ± 0.07 | 23.5 ± 42.9 | 0.13 ± 0.13 |
Sediment | |||||||
pH | EC | Eh | TOC | TS | Fe oxyhyd. | Fe pyrite | |
dS cm−1 | mV | % | µmol g−1 | ||||
Louro (cm) | (n = 2) | (n = 2) | (n = 2) | (n = 4) | (n = 4) | (n = 4) | (n = 4) |
0–15 | 6.8 | 24.1 | 124 | 8.6 ± 1.8 | 2.0 ± 0.2 | 37.0 ± 15 | 367 ± 126 |
40–60 | 6.9 | 20.1 | 110 | 4.2 ± 0.7 | 1.2 ± 0.1 | 11.9 ± 5.8 | 197 ± 13 |
Vixán (cm) | (n = 1) | (n = 1) | (n = 3) | (n = 4) | (n = 4) | (n = 4) | (n = 4) |
0–15 | 7.8 | 14 | −78 ± 9 | 8.7 ± 2.6 | 0.91 ± 0.4 | 22.5 ± 1.9 | 131 ± 55 |
40–60 | 7.3 | −150 ± 25 | 1.6 ± 0.3 | 0.20 ± 0.3 | 23.0 ± 7.0 | 73.9 ± 3.9 | |
90–110 | na | 10.8 | na | 4.2 ± 0.8 | 0.92 ± 0.1 | na | na |
Xuño (cm) | (n = 1) | (n = 1) | (n = 1) | (n = 4) | (n = 4) | (n = 4) | (n = 4) |
0–15 | 6.9 | −60 | 0.56 | 11.5 ± 0.6 | 0.26 ± 0.16 | 187 ± 39 | 0.24 ± 0.17 |
40–60 | 6.4 | −45 | na | 0.22 ± 0.11 | 0.02 ± 0.02 | 2.85 ± 0.01 | 0.05 ± 0.01 |
90–110 | 6.5 | −12 | na | 1.76 ± 0.06 | 0.61 ± 0.04 | 1.04 ± 1.52 | 1.38 ± 1.32 |
Bodeira (cm) | (n = 1) | (n = 1) | (n = 1) | (n = 4) | (n = 4) | (n = 4) | (n = 4) |
0–15 | 6.1 | 70 | 0.76 | 24.6 ± 4.6 | 0.72 ± 0.32 | 89.1 ± 18 | 0.04 ± 0.03 |
40–60 | na | na | na | 5.30 ± 1.40 | 0.09 ± 0.04 | 63.4 ± 15 | 2.54 ± 1.73 |
90–110 | 7 | −120 | na | 1.61 ± 0.62 | 0.45 ± 0.02 | 188 ± 16 | 2.99 ± 1.78 |
Zone | Lagoon/Lake Area (ha) | Free Water Surface (ha) | Area Defined by Autonomous Government | |
---|---|---|---|---|
Coastal Lagoon (ha) | Natural Eutrophic Lake (ha) | |||
Louro | 33.6 | 19.6 | 23.3 | - |
Xuño | 2.3 | 0.005 | 2.3 | 1.7 |
Vixán | 18.0 | 3.4 | 16.4 | - |
Bodeira | 1.7 | 0.1 | 1.2 | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Pazo, A.; Pérez-Alberti, A.; Fraga-Santiago, P.; Souto-Souto, M.; Otero, X.L. Contribution of GIS and Geochemical Proxies to Improving Habitat Identification and Delimitation for the Natura 2000 Network: The Case of Coastal Lagoons in Galicia (NW Iberian Peninsula). Appl. Sci. 2020, 10, 9068. https://doi.org/10.3390/app10249068
Gómez-Pazo A, Pérez-Alberti A, Fraga-Santiago P, Souto-Souto M, Otero XL. Contribution of GIS and Geochemical Proxies to Improving Habitat Identification and Delimitation for the Natura 2000 Network: The Case of Coastal Lagoons in Galicia (NW Iberian Peninsula). Applied Sciences. 2020; 10(24):9068. https://doi.org/10.3390/app10249068
Chicago/Turabian StyleGómez-Pazo, Alejandro, Augusto Pérez-Alberti, Pedro Fraga-Santiago, Martin Souto-Souto, and X. L. Otero. 2020. "Contribution of GIS and Geochemical Proxies to Improving Habitat Identification and Delimitation for the Natura 2000 Network: The Case of Coastal Lagoons in Galicia (NW Iberian Peninsula)" Applied Sciences 10, no. 24: 9068. https://doi.org/10.3390/app10249068
APA StyleGómez-Pazo, A., Pérez-Alberti, A., Fraga-Santiago, P., Souto-Souto, M., & Otero, X. L. (2020). Contribution of GIS and Geochemical Proxies to Improving Habitat Identification and Delimitation for the Natura 2000 Network: The Case of Coastal Lagoons in Galicia (NW Iberian Peninsula). Applied Sciences, 10(24), 9068. https://doi.org/10.3390/app10249068