The ‘DEEP’ Landing Error Scoring System
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection
2.3. Clinical LESS
2.4. Automated LESS
2.5. Statistical Method
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hébert-Losier, K.; Pini, A.; Vantini, S.; Strandberg, J.; Abramowicz, K.; Schelin, L.; Häger, C.K. One-leg hop kinematics 20years following anterior cruciate ligament rupture: Data revisited using functional data analysis. Clin. Biomech. 2015, 30, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Hébert-Losier, K.; Schelin, L.; Tengman, E.; Strong, A.; Hager, C.K. Curve analyses reveal altered knee, hip, and trunk kinematics during drop-jumps long after anterior cruciate ligament rupture. Knee 2018, 25, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Mather, R.C., 3rd; Hettrich, C.M.; Dunn, W.R.; Cole, B.J.; Bach, B.R., Jr.; Huston, L.J.; Reinke, E.K.; Spindler, K.P. Cost-effectiveness analysis of early reconstruction versus rehabilitation and delayed reconstruction for Anterior Cruciate Ligament tears. Am. J. Sports Med. 2014, 42, 1583–1591. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, K.; Clatworthy, M.; Fulcher, M.; Chang, K.; Young, S.W. Marked increase in the incidence of anterior cruciate ligament reconstructions in young females in New Zealand. ANZ J. Surg. 2019, 89, 1151–1155. [Google Scholar] [CrossRef]
- Hootman, J.M.; Dick, R.; Agel, J. Epidemiology of collegiate injuries for 15 sports: Summary and recommendations for injury prevention initiatives. J. Athl. Train. 2007, 42, 311–319. [Google Scholar]
- Al Attar, W.S.A.; Alshehri, M.A. A meta-analysis of meta-analyses of the effectiveness of FIFA injury prevention programs in soccer. Scand. J. Med. Sci. Sports 2019, 29, 1846–1855. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R. Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. Am. J. Sports Med. 2006, 34, 299–311. [Google Scholar] [CrossRef]
- Leppänen, M.; Pasanen, K.; Kujala, U.M.; Vasankari, T.; Kannus, P.; Ayramo, S.; Krosshaug, T.; Bahr, R.; Avela, J.; Perttunen, J.; et al. Stiff landings are associated with increased ACL injury risk in young female basketball and floorball players. Am. J. Sports Med. 2017, 45, 386–393. [Google Scholar] [CrossRef]
- Chimera, N.J.; Warren, M. Use of clinical movement screening tests to predict injury in sport. World J. Orthop. 2016, 7, 202–217. [Google Scholar] [CrossRef]
- Padua, D.A.; Marshall, S.W.; Boling, M.C.; Thigpen, C.A.; Garrett, W.E., Jr.; Beutler, A.I. The Landing Error Scoring System (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: The JUMP-ACL study. Am. J. Sports Med. 2009, 37, 1996–2002. [Google Scholar] [CrossRef]
- Hanzlíková, I.; Hébert-Losier, K. Is the Landing Error Scoring System reliable and valid? A systematic review. Sports Health 2020. [Google Scholar] [CrossRef]
- Padua, D.A.; DiStefano, L.J.; Beutler, A.I.; de la Motte, S.J.; DiStefano, M.J.; Marshall, S.W. The Landing Error Scoring System as a screening tool for an anterior cruciate ligament injury-prevention program in elite-youth soccer athletes. J. Athl. Train. 2015, 50, 589–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dar, G.; Yehiel, A.; Cale’Benzoor, M. Concurrent criterion validity of a novel portable motion analysis system for assessing the landing error scoring system (LESS) test. Sports Biomech. 2019, 18, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Markbreiter, J.G.; Sagon, B.K.; Valovich McLeod, T.C.; Welch, C.E. Reliability of clinician scoring of the landing error scoring system to assess jump-landing movement patterns. J. Sport Rehabil. 2015, 24, 214–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauntel, T.C.; Padua, D.A.; Stanley, L.E.; Frank, B.S.; DiStefano, L.J.; Peck, K.Y.; Cameron, K.L.; Marshall, S.W. Automated quantification of the Landing Error Scoring System with a markerless motion-capture system. J. Athl. Train. 2017, 52, 1002–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Z.; Simon, T.; Wei, S.-E.; Sheikh, Y. Realtime multi-person 2d pose estimation using part affinity fields. arXiv 2017, arXiv:1611.08050v2. [Google Scholar]
- Mathis, A.; Mamidanna, P.; Cury, K.M.; Abe, T.; Murthy, V.N.; Mathis, M.W.; Bethge, M. DeepLabCut: Markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 2018, 21, 1281–1289. [Google Scholar] [CrossRef]
- Mathis, M.W.; Mathis, A. Deep learning tools for the measurement of animal behavior in neuroscience. Curr. Opin. Neurobiol. 2020, 60, 1–11. [Google Scholar] [CrossRef]
- Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. In Data Mining: Practical Machine Learning Tools and Techniques, 4th ed.; Witten, I.H., Frank, E., Hall, M.A., Pal, C.J., Eds.; Morgan Kaufmann: Cambridge, MA, USA, 2016. [Google Scholar]
- Nadeau, C.; Bengio, Y. Inference for the Generalization Error. Mach. Learn. 2003, 52, 239–281. [Google Scholar] [CrossRef] [Green Version]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Dallinga, J.M.; Benjaminse, A.; Lemmink, K.A.P.M. Which screening tools can predict injury to the lower extremities in team sports? A systematic review. Sports Med. 2012, 42, 791–815. [Google Scholar] [CrossRef] [PubMed]
- Onate, J.; Cortes, N.; Welch, C.; Van Lunen, B.L. Expert versus novice interrater reliability and criterion validity of the landing error scoring system. J. Sport Rehabil. 2010, 19, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.-E.; Sheikh, Y. OpenPose: Realtime multi-person 2D pose estimation using Part Affinity Fields. arXiv 2018, arXiv:1812.08008v1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Nan, K.; Liu, S.; Du, J.; Liu, H. Deep model compression for mobile platforms: A survey. Tsinghua Sci. Technol. 2019, 24, 677–693. [Google Scholar] [CrossRef]
- Ekegren, C.L.; Miller, W.C.; Celebrini, R.G.; Eng, J.J.; Macintyre, D.L. Reliability and validity of observational risk screening in evaluating dynamic knee valgus. J. Orthop. Sports Phys. Ther. 2009, 39, 665–674. [Google Scholar] [CrossRef] [Green Version]
- Whatman, C.; Hing, W.; Hume, P. Physiotherapist agreement when visually rating movement quality during lower extremity functional screening tests. Phys. Ther. Sport 2012, 13, 87–96. [Google Scholar] [CrossRef]
- Willy, R.W. Innovations and pitfalls in the use of wearable devices in the prevention and rehabilitation of running related injuries. Phys. Ther. Sport 2018, 29, 26–33. [Google Scholar] [CrossRef]
- Iqbal, M.H.; Aydin, A.; Brunckhorst, O.; Dasgupta, P.; Ahmed, K. A review of wearable technology in medicine. J. R. Soc. Med. 2016, 109, 372–380. [Google Scholar] [CrossRef]
- Whelan, D.F.; O’Reilly, M.A.; Ward, T.E.; Delahunt, E.; Caulfield, B. Technology in rehabilitation: Evaluating the single leg squat exercise with wearable inertial measurement units. Methods Inf. Med. 2017, 56, 88–94. [Google Scholar] [CrossRef] [Green Version]
- McLean, S.G.; Walker, K.; Ford, K.R.; Myer, G.D.; Hewett, T.E.; van den Bogert, A.J. Evaluation of a two dimensional analysis method as a screening and evaluation tool for anterior cruciate ligament injury. Br. J. Sports Med. 2005, 39, 355–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willson, J.D.; Davis, I.S. Utility of the frontal plane projection angle in females with patellofemoral pain. J. Orthop. Sports Phys. Ther. 2008, 38, 606–615. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, F.C.L.; Fredette, A.; Echeverria, S.O.; Batcho, C.S.; Roy, J.S. Validity and reliability of 2-Dimensional video-based assessment to analyze foot strike pattern and step rate during running: A systematic review. Sports Health 2019, 11, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Dos’Santos, T.; McBurnie, A.; Donelon, T.; Thomas, C.; Comfort, P.; Jones, P.A. A qualitative screening tool to identify athletes with ‘high-risk’ movement mechanics during cutting: The cutting movement assessment score (CMAS). Phys. Ther. Sport 2019, 38, 152–161. [Google Scholar] [CrossRef]
- Myer, G.D.; Ford, K.R.; Hewett, T.E. Tuck jump assessment for reducing Anterior Cruciate Ligament injury risk. Athl. Ther. Today 2008, 13, 39–44. [Google Scholar] [CrossRef]
No | Item | Definition of Error |
---|---|---|
1. | Knee flexion IC | Knee flexion < 30° |
2. | Hip flexion IC | Thigh is in line with the trunk (hips not flexed) |
3. | Trunk flexion IC | Trunk is vertical or extended at the hips (trunk not flexed) |
4. | Ankle plantar flexion IC | Heel-to-toe or flat foot landing |
5. | Knee valgus IC | The centre of the patella is medial to the midfoot |
6. | Lateral trunk flexion IC | The midline of the trunk is flexed to the left or right |
7. | Stance width (wide) | Feet are greater than shoulder width apart |
8. | Stance width (narrow) | Feet are less than shoulder width apart |
9. | Foot (toe-in) | Foot is externally rotated > 30° between IC and KFmax |
10. | Foot (toe-out) | Foot is internally rotated > 30° between IC and KFmax |
11. | Symmetric foot contact IC | One foot lands before the other One foot lands heel-toe and the other foot lands toe-heel |
12. | Knee flexion displacement | Knee flexes < 45° between IC and KFmax |
13. | Hip flexion at KFmax | Thigh does not flex more on trunk from IC to KFmax |
14. | Trunk flexion at KFmax | Trunk does not flex more from IC to KFmax |
15. | Knee valgus displacement | At max medial knee position, centre of the patella is medial to the midfoot |
16. | Joint displacement | Soft, average, stiff |
17. | Overall impression | Excellent, average, poor |
Step | Description |
---|---|
Input: F, Frontal view video; L, Lateral view video | |
1. | Obtain the body part keypoints in each frame in both F and L videos using OpenPose |
2. | Impute keypoint positions using linear interpolation when not recognized by OpenPose |
3. | Find F key frames IC and KFmax |
3.1. | Based on the coordinates of the left and right ankle (both visible in F), find the intersections of the original and rolling window plots a for each ankle |
3.2. | Calculate the distances between each consecutive intersection point pairs |
3.3. | Find the first point of the pair of intersection points with the longest distances for each ankle |
3.4. | Identify the first point of the pair of intersection points that has the lowest x value (i.e., number of frames) as IC |
3.5. | Based on the coordinates of the body keypoint, find the intersections of the original and rolling window plots a |
3.6. | Calculate the distances between each consecutive intersection point pairs |
3.7. | Identify the first point of the pair of intersection points with the longest distances as KFmax |
4. | Find L key frames IC and KFmax |
4.1. | Based on the coordinates of the individual’s right ankle (which is closest to the camera L), find the intersections of the original and rolling window plots |
4.2. | Calculate the distances between each consecutive intersection point pairs |
4.3. | Identify the first point of the pair of intersection points with the longest distances as IC |
4.4 | Based on the coordinates of the body keypoint, find the intersections of the original and rolling window a plots |
4.5. | Calculate the distances between each consecutive intersection point pairs |
4.6. | Identify the first point of the pair of intersection points with the longest distances with upper/positive trend as KFmax |
5. | Crop the videos (F and L) according to IC and KFmax key frames. |
Output: F’, cropped version of frontal view video; L, cropped version of lateral view video |
Key Frames and Views | Measurement (OpenPose Numbers a) | Kinematic Features |
---|---|---|
All four key frames (two frontal key frames and two lateral key frames) | Angle (8,9,10) | Right knee angle |
Angle (9,8,1) | Right hip angle | |
Angle (2,1,8) | Right trunk angle | |
Angle (3,2,1) | Right shoulder angle | |
Angle (4,3,2) | Right elbow angle | |
Angle (2,1,0) | Right neck angle | |
Two key frames (two frontal key frames) | Angle (11,12,13) | Left knee angle |
Angle (1,11,12) | Left hip angle | |
Angle (11,1,5) | Left trunk angle | |
Angle (1,5,6) | Left shoulder angle | |
Angle (5,6,7) | Left elbow angle | |
Distance (9,12) | Knee distance | |
Distance (2,5) | Shoulder distance | |
Distance (9,12)/Distance (2,5) | Knee distance/Shoulder distance |
Cropper | Dataset | Mean Absolute Error (n Errors) | Correlation (r) | ||||
RF | Linear | Dummy | RF | Linear | Dummy | ||
(i) Manual | (i) Full | 1.23 ± 0.18 | 1.39 ± 0.20 * | 1.44 ± 0.20 * | 0.52 ± 0.15 | 0.39 ± 0.14 * | 0.0 ± 0.0 * |
(ii) Balanced | 1.57 ± 0.27 | 1.90 ± 0.61 | 2.08 ± 0.34 * | 0.60 ± 0.15 | 0.48 ± 0.21 * | 0.0 ± 0.0 * | |
(ii) Automatic | (i) Full | 1.23 ± 0.18 | 1.32 ± 0.20 * | 1.44 ± 0.20 * | 0.53 ± 0.15 | 0.44 ± 0.16 * | 0.0 ± 0.0 * |
(ii) Balanced | 1.56 ± 0.29 | 1.63 ± 0.32 | 2.08 ± 0.32 * | 0.63 ± 0.17 | 0.51 ± 0.20 * | 0.0 ± 0.0 * | |
Cropper | Dataset | Sensitivity a | Specificity a | ||||
RF | Linear | Dummy | RF | Linear | Dummy | ||
(i) Manual | (i) Full | 0.80 ± 0.09 | 0.75 ± 0.09 | 1.0 ± 0.0 * | 0.50 ± 0.18 | 0.51 ± 0.18 | 0.0 ± 0.0 * |
(ii) Balanced | 0.77 ± 0.13 | 0.73 ± 0.13 | 1.0 ± 0.0 * | 0.73 ± 0.18 | 0.63 ± 0.21 | 0.0 ± 0.0 * | |
(ii) Automatic | (i) Full | 0.82 ± 0.07 | 0.77 ± 0.09 * | 1.0 ± 0.0 * | 0.52 ± 0.19 | 0.52 ± 0.18 | 0.0 ± 0.0 * |
(ii) Balanced | 0.76 ± 0.15 | 0.77 ± 0.13 | 1.0 ± 0.0 * | 0.77 ± 0.19 | 0.70 ± 0.21 | 0.0 ± 0.0 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hébert-Losier, K.; Hanzlíková, I.; Zheng, C.; Streeter, L.; Mayo, M. The ‘DEEP’ Landing Error Scoring System. Appl. Sci. 2020, 10, 892. https://doi.org/10.3390/app10030892
Hébert-Losier K, Hanzlíková I, Zheng C, Streeter L, Mayo M. The ‘DEEP’ Landing Error Scoring System. Applied Sciences. 2020; 10(3):892. https://doi.org/10.3390/app10030892
Chicago/Turabian StyleHébert-Losier, Kim, Ivana Hanzlíková, Chen Zheng, Lee Streeter, and Michael Mayo. 2020. "The ‘DEEP’ Landing Error Scoring System" Applied Sciences 10, no. 3: 892. https://doi.org/10.3390/app10030892
APA StyleHébert-Losier, K., Hanzlíková, I., Zheng, C., Streeter, L., & Mayo, M. (2020). The ‘DEEP’ Landing Error Scoring System. Applied Sciences, 10(3), 892. https://doi.org/10.3390/app10030892