Orientation of the Head and Trunk During Functional Upper Limb Movement
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Initial Head and Trunk Posture
3.2. Final Head Posture in Space
3.3. Final Head Posture by Reference to the Trunk
3.4. Coupling between Lateral Bending and Rotation during Heading and Pointing
3.5. Sinusoidal Fitting for Comparison between Heading and Pointing Tasks
3.5.1. Head in Space
3.5.2. Head versus Trunk
4. Discussion
5. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Cohen, S.P.; Hooten, W.M. Advances in the diagnosis and management of neck pain. BMJ 2017, 358, j3221. [Google Scholar] [CrossRef] [PubMed]
- Linton, S.J.; Ryberg, M. Do epidemiological results replicate? The prevalence and health-economic consequences of neck and back pain in the general population. Eur. J. Pain 2000, 4, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Briner, W.W., Jr.; Kacmar, L. Common injuries in volleyball. Mechanisms of injury, prevention and rehabilitation. Sports Med. 1997, 24, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Frisch, K.E.; Clark, J.; Hanson, C.; Fagerness, C.; Conway, A.; Hoogendoorn, L. High Prevalence of Nontraumatic Shoulder Pain in a Regional Sample of Female High School Volleyball Athletes. Orthop. J. Sports Med. 2017, 5, 2325967117712236. [Google Scholar] [CrossRef]
- Reeser, J.C.; Joy, E.A.; Porucznik, C.A.; Berg, R.L.; Colliver, E.B.; Willick, S.E. Risk factors for volleyball-related shoulder pain and dysfunction. Pm&r 2010, 2, 27–36. [Google Scholar] [CrossRef]
- Seminati, E.; Minetti, A.E. Overuse in volleyball training/practice: A review on shoulder and spine-related injuries. Eur. J. Sport Sci. 2013, 13, 732–743. [Google Scholar] [CrossRef]
- Wang, H.K.; Cochrane, T. A descriptive epidemiological study of shoulder injury in top level English male volleyball players. Int. J. Sports Med. 2001, 22, 159–163. [Google Scholar] [CrossRef]
- Croft, P.R.; Lewis, M.; Papageorgiou, A.C.; Thomas, E.; Jayson, M.I.; Macfarlane, G.J.; Silman, A.J. Risk factors for neck pain: A longitudinal study in the general population. Pain 2001, 93, 317–325. [Google Scholar] [CrossRef]
- Dorshimer, G.W.; Kelly, M. Cervical pain in the athlete: Common conditions and treatment. Prim. Care 2005, 32, 231–243. [Google Scholar] [CrossRef]
- Durall, C.J. Therapeutic exercise for athletes with nonspecific neck pain: A current concepts review. Sports Health 2012, 4, 293–301. [Google Scholar] [CrossRef]
- Bahr, R. No injuries, but plenty of pain? On the methodology for recording overuse symptoms in sports. Br. J. Sports Med. 2009, 43, 966–972. [Google Scholar] [CrossRef] [PubMed]
- Kapandji, I.A. Physiologie Articulaire: Schémas Commentés de Mécanique Humaine. Tome 1: Membre Supérieur, 5th ed.; Maloine: Paris, France, 1980. [Google Scholar]
- Wilke, J.; Krause, F. Myofascial chains of the upper limb: A systematic review of anatomical studies. Clin. Anat. 2019, 32, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Stapley, P.J.; Pozzo, T.; Cheron, G.; Grishin, A. Does the coordination between posture and movement during human whole-body reaching ensure center of mass stabilization? Exp. Brain Res. 1999, 129, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Mark, L.S.; Nemeth, K.; Gardner, D.; Dainoff, M.; Paasche, J.; Duffy, M.; Grandt, K. Postural dynamics and the preferred critical boundary for visually guided reaching. J. Exp. Psychol. 1997, 23, 1365–1379. [Google Scholar] [CrossRef]
- Crawford, J.; Henriques, D.; Medendorp, W. Three-dimensional transformations for goal-directed action. Ann. Rev. Neurosci. 2011, 34, 309–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guitton, D.; Bergeron, A.; Choi, W.; Matsuo, S. On the feedback control of orienting gaze shifts made with eye and head movements. Prog. Brain Res. 2003, 142, 55–68. [Google Scholar] [PubMed]
- Suzuki, M.; Izawa, A.; Takahashi, K.; Yamazaki, Y. The coordination of eye, head, and arm movements during rapid gaze orienting and arm pointing. Exp. Brain Res. 2008, 184, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Vercher, J.; Magenes, G.; Prablanc, C.; Gauthier, G. Eye-head-hand coordination in pointing at visual targets: Spatial and temporal analysis. Exp. Brain Res. 1994, 99, 507–523. [Google Scholar] [CrossRef]
- Urbin, M.A. Visual regulation of overarm throwing performance. Exp. Brain Res. 2013, 225, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Van Maarseveen, M.J.J.; Oudejans, R.R.D. Motor and Gaze Behaviors of Youth Basketball Players Taking Contested and Uncontested Jump Shots. Front. Psychol. 2018, 9, 706. [Google Scholar] [CrossRef] [Green Version]
- Cesqui, B.; Mezzetti, M.; Lacquaniti, F.; d’Avella, A. Gaze behavior in one-handed catching and its relation with interceptive performance: What the eyes can’t tell. PLoS ONE 2015, 10, e0119445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fogt, N.; Persson, T.W. A Pilot Study of Horizontal Head and Eye Rotations in Baseball Batting. Optom. Vis. Sci. 2017, 94, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Roren, A.; Nguyen, C.; Zauderer, J.; Acapo, S.; Rannou, F.; Roby-Brami, A.; Rannou, F. Arm elevation involves cervical spine 3D rotations. Ann. Phys. Rehabil. Med. 2019, in press. [Google Scholar] [CrossRef] [PubMed]
- Jordan, K.; Dziedzic, K.; Jones, P.W.; Ong, B.N.; Dawes, P.T. The reliability of the three-dimensional FASTRAK measurement system in measuring cervical spine and shoulder range of motion in healthy subjects. Rheumatology 2000, 39, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Stewart, S.; Jull, G.A.; Ng, J.K.-F.; Willems, J.M. An initial analysis of thoracic spine movement during unilateral arm elevation. J. Man. Manip. Ther. 1995, 3, 15–20. [Google Scholar] [CrossRef]
- Van der Helm, F.C.T. A standardized protocol for motion recordings of the shoulder. In First Conference of the International Shoulder Group; Veeger, H.E.J., van der Helm, F.C.T., Rozing, P.M., Eds.; Shaker Publishers: Delft, The Netherlands, 1997; pp. 27–28. [Google Scholar]
- Jampel, R.S.; Shi, D.X. The primary position of the eyes, the resetting saccade, and the transverse visual head plane. Head movements around the cervical joints. Investig. Ophthalmol. Vis. Sci. 1992, 33, 2501–2510. [Google Scholar]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Anastasopoulos, D.; Naushahi, J.; Sklavos, S.; Bronstein, A. Fast gaze reorientations by combined movements of the eye, head, trunk and lower extremities. Exp. Brain Res. 2015, 233, 1639–1650. [Google Scholar] [CrossRef] [Green Version]
- Kavanagh, J.; Barrett, R.; Morrison, S. The role of the neck and trunk in facilitating head stability during walking. Exp. Brain Res. 2006, 172, 454–463. [Google Scholar] [CrossRef]
- Pozzo, T.; Berthoz, A.; Lefort, L. Head stabilization during various locomotor tasks in humans. I. Normal subjects. Exp. Brain Res. 1990, 82, 97–106. [Google Scholar] [CrossRef]
- Yamazoe, H.; Mitsugami, I.; Okada, T.; Yagi, Y. Analysis of head and chest movements that correspond to gaze directions during walking. Exp. Brain Res. 2019, 237, 3047–3058. [Google Scholar] [CrossRef] [PubMed]
- Stamenkovic, A.; Stapley, P.J.; Robins, R.; Hollands, M.A. Do postural constraints affect eye, head, and arm coordination? J. Neurophysiol. 2018, 120, 2066–2082. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Gillespie, R.; Martin, B. Head movement control in visually guided tasks: Postural goal and optimality. Comput. Biol. Med. 2007, 37, 1009–1019. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Nakashima, R.; Matsumiya, K.; Kuriki, I.; Shioiri, S. Eye-head coordination for visual cognitive processing. PLoS ONE 2015, 10, e0121035. [Google Scholar] [CrossRef] [Green Version]
- Stahl, J.S. Amplitude of human head movements associated with horizontal saccades. Exp. Brain Res. 1999, 126, 41–54. [Google Scholar] [CrossRef]
- Fayad, F.; Hanneton, S.; Lefevre-Colau, M.M.; Poiraudeau, S.; Revel, M.; Roby-Brami, A. The trunk as a part of the kinematic chain for arm elevation in healthy subjects and in patients with frozen shoulder. Brain Res. 2008, 1191, 107–115. [Google Scholar] [CrossRef]
- Robertson, J.V.; Roby-Brami, A. The trunk as a part of the kinematic chain for reaching movements in healthy subjects and hemiparetic patients. Brain Res. 2011, 1382, 137–146. [Google Scholar] [CrossRef]
- Hof, A.L.; Koerhuis, C.L.; Winters, J.C. ‘Coupled motions’ in cervical spine rotation can be misleading. Clin. Biomech. 2001, 16, 455–458. [Google Scholar] [CrossRef] [Green Version]
- Laville, A.; Laporte, S.; Skalli, W. Parametric and subject-specific finite element modelling of the lower cervical spine. Influence of geometrical parameters on the motion patterns. J. Biomech. 2009, 42, 1409–1415. [Google Scholar] [CrossRef]
- Panjabi, M.M.; Oda, T.; Crisco, J.J., III; Dvorak, J.; Grob, D. Posture affects motion coupling patterns of the upper cervical spine. J. Orthop. Res. 1993, 11, 525–536. [Google Scholar] [CrossRef]
- Salem, W.; Lenders, C.; Mathieu, J.; Hermanus, N.; Klein, P. In vivo three-dimensional kinematics of the cervical spine during maximal axial rotation. Man. Ther. 2013, 18, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Penning, L. Normal movements of the cervical spine. AJR Am. J. Roentgenol. 1978, 130, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Alund, M.; Larsson, S.E. Three-dimensional analysis of neck motion. A clinical method. Spine 1990, 15, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, J.; Antinnes, J.A.; Panjabi, M.; Loustalot, D.; Bonomo, M. Age and gender related normal motion of the cervical spine. Spine 1992, 17, S393–S398. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, V.F.; Sforza, C.; Serrao, G.; Grassi, G.; Mossi, E. Active range of motion of the head and cervical spine: A three-dimensional investigation in healthy young adults. J. Orthop. Res. 2002, 20, 122–129. [Google Scholar] [CrossRef]
- Lansade, C.; Laporte, S.; Thoreux, P.; Rousseau, M.A.; Skalli, W.; Lavaste, F. Three-dimensional analysis of the cervical spine kinematics: Effect of age and gender in healthy subjects. Spine 2009, 34, 2900–2906. [Google Scholar] [CrossRef]
- Trott, P.H.; Pearcy, M.J.; Ruston, S.A.; Fulton, I.; Brien, C. Three-dimensional analysis of active cervical motion: The effect of age and gender. Clin. Biomech. 1996, 11, 201–206. [Google Scholar] [CrossRef]
- Radau, P.; Tweed, D.; Vilis, T. Three-dimensional eye, head, and chest orientations after large gaze shifts and the underlying neural strategies. J. Neurophysiol. 1994, 72, 2840–2852. [Google Scholar] [CrossRef]
- Crawford, J.D.; Ceylan, M.; Klier, E.; Guitton, D. Three-Dimensional Eye-Head Coordination during Gaze Saccades in the Primate. J. Neurophysiol. 1999, 81, 1760–1782. [Google Scholar] [CrossRef]
- Vasavada, A.N.; Peterson, B.W.; Delp, S.L. Three-dimensional spatial tuning of neck muscle activation in humans. Exp. Brain Res. 2002, 147, 437–448. [Google Scholar] [CrossRef]
- Kristjansson, E.; Jónsson, H. Symptom Characteristics in Women with Chronic WAD, Grades I-II, and Chronic Insidious Onset Neck Pain: A Cross-Sectional Study with an 18-Month Follow-Up. J. Whiplash Relat. Disord. 2004, 3, 3–17. [Google Scholar] [CrossRef]
- Treleaven, J. Dizziness, Unsteadiness, Visual Disturbances, and Sensorimotor Control in Traumatic Neck Pain. J. Orthop. Sports Phys. Ther. 2017, 47, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Revel, M.; Minguet, M.; Gregoy, P.; Vaillant, J.; Manuel, J.L. Changes in cervicocephalic kinesthesia after a proprioceptive rehabilitation program in patients with neck pain: A randomized controlled study. Arch. Phys. Med. Rehabil. 1994, 75, 895–899. [Google Scholar] [CrossRef]
- Kristjansson, E.; Treleaven, J. Sensorimotor function and dizziness in neck pain: Implications for assessment and management. J. Orthop. Sports Phys. Ther. 2009, 39, 364–377. [Google Scholar] [CrossRef] [Green Version]
- Falla, D.; Jull, G.; Dall’Alba, P.; Rainoldi, A.; Merletti, R. An electromyographic analysis of the deep cervical flexor muscles in performance of craniocervical flexion. Phys. Ther. 2003, 83, 899–906. [Google Scholar] [CrossRef] [Green Version]
- Falla, D.; Bilenkij, G.; Jull, G. Patients with chronic neck pain demonstrate altered patterns of muscle activation during performance of a functional upper limb task. Spine 2004, 29, 1436–1440. [Google Scholar] [CrossRef]
- Luciani, B.D.; Desmet, D.M.; Alkayyali, A.A.; Leonardis, J.M.; Lipps, D.B. Identifying the mechanical and neural properties of the sternocleidomastoid muscles. J. Appl. Physiol. 2018, 124, 1297–1303. [Google Scholar] [CrossRef]
- Simons, D.G. Review of enigmatic MTrPs as a common cause of enigmatic musculoskeletal pain and dysfunction. J. Electromyogr. Kinesiol. 2004, 14, 95–107. [Google Scholar] [CrossRef]
- Yang, J.F.; Scholz, J.P. Learning a throwing task is associated with differential changes in the use of motor abundance. Exp. Brain Res. 2005, 163, 137–158. [Google Scholar] [CrossRef]
- Gross, A.R.; Paquin, J.P.; Dupont, G.; Blanchette, S.; Lalonde, P.; Cristie, T.; Graham, N.; Kay, T.M.; Burnie, S.J.; Gelley, G.; et al. Exercises for mechanical neck disorders: A Cochrane review update. Man. Ther. 2016, 24, 25–45. [Google Scholar] [CrossRef]
- Lebel, K.; Nguyen, H.; Duval, C.; Plamondon, R.; Boissy, P. Capturing the Cranio-Caudal Signature of a Turn with Inertial Measurement Systems: Methods, Parameters Robustness and Reliability. Front. Bioeng. Biotechnol. 2017, 5, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.S.; Yang, K.Y.; Youn, K.; Yoon, C.; Yeom, J.; Hwang, H.; Lee, J.; Kim, K. Validation of Attitude and Heading Reference System and Microsoft Kinect for Continuous Measurement of Cervical Range of Motion Compared to the Optical Motion Capture System. Ann. Rehabil. Med. 2016, 40, 568–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, M.; Collier, G.; Reinkensmeyer, D.J.; DeRuyter, F.; Dzivak, J.; Zondervan, D.; Morris, J. Big Data Analytics and Sensor-Enhanced Activity Management to Improve Effectiveness and Efficiency of Outpatient Medical Rehabilitation. Int. J. Environ. Res. Public Health 2020, 17, 748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, H.S.; Lee, W.H.; Seo, H.G.; Kim, Y.J.; Bang, M.S.; Kim, S. Inertial Measurement Unit Based Upper Extremity Motion Characterization for Action Research Arm Test and Activities of Daily Living. Sensors 2019, 19, 1782. [Google Scholar] [CrossRef] [Green Version]
- Parrington, L.; Jehu, D.A.; Fino, P.C.; Pearson, S.; El-Gohary, M.; King, L.A. Validation of an Inertial Sensor Algorithm to Quantify Head and Trunk Movement in Healthy Young Adults and Individuals with Mild Traumatic Brain Injury. Sensors 2018, 18, 4501. [Google Scholar] [CrossRef] [Green Version]
- Theobald, P.S.; Jones, M.D.; Williams, J.M. Do inertial sensors represent a viable method to reliably measure cervical spine range of motion? Man. Ther. 2012, 17, 92–96. [Google Scholar] [CrossRef]
HEADING | |||||||||
E | NE | N | NW | W | SW | S | SE | ||
AP | head | −2.8 ± 0.8 | 7.3 ± 1.0 | 15.1 ± 1.3 | 8.0 ± 0.9 | −1.6 ± 0.7 | −9.9 ± 1.0 | −13.2 ± 1.4 | −9.4 ± 0.9 |
trunk | −1.5 ± 1.6 | −2.4 ± 1.6 | −1.5 ± 1.4 | −1.5 ± 1.5 | −1.7 ± 1.6 | −1.2 ± 1.6 | −0.9 ± 1.6 | −0.9 ± 1.5 | |
H vs. T | −0.7 ± 1.6 | 10.2 ± 1.4 | 16.6 ± 1.3 | 9.0 ± 1.2 | −0.4 ± 1.6 | −8.8 ± 2.3 | −12.2 ± 2.4 | −8.2 ± 2.2 | |
LA | head | 7.7 ± 0.8 | 7.1 ± 1.1 | 0.8 ± 0.6 | −5.8 ± 0.7 | −7.4 ± 0.6 | −2.6 ± 0.7 | 0.1 ± 0.4 | 2.6 ± 0.6 |
trunk | −0.5 ± 0.7 | −0.9 ± 0.7 | −0.6 ± 0.7 | -0.9 ± 0.7 | −1.0 ± 0.8 | −1.4 ± 0.7 | −0.9 ± 0.7 | −0.9 ± 0.7 | |
H vs. T | 6.0 ± 1.0 | 4.8 ± 1.1 | −1.6 ± 0.7 | −7.5 ± 1.0 | −8.3 ± 0.9 | −2.7 ± 1.0 | −0.2 ± 0.7 | 1.7 ± 0.8 | |
RO | head | −17.0 ± 1.2 | −9.3 ± 1.1 | −0.7 ± 0.4 | 8.5 ± 0.6 | 16.0 ± 1.3 | 10.6 ± 1.0 | −0.4 ± 0.5 | −14.3 ± 1.1 |
trunk | −5.2 ± 1.1 | −5.2 ± 1.2 | −4.3 ± 1.5 | −4.2 ± 1.4 | −3.8 ± 1.7 | −4.1 ± 1.6 | −4.5 ± 1.4 | −5.0 ± 1.3 | |
H vs. T | −12.0 ± 1.9 | −4.6 ± 1.8 | 2.8 ± 1.3 | 12.5 ± 1.4 | 19.7 ± 1.4 | 14.9 ± 1.4 | 4.1 ± 1.2 | −9.3 ± 1.7 | |
POINTING | |||||||||
E | NE | N | NW | W | SW | S | SE | ||
AP | head | −3.3 ± 1.5 | 1.7 ± 2.9 | 4.8 ± 1.7 | 1.8 ± 1.2 | −3.8 ± 1.0 | −8.3 ± 1.4 | −8.1 ± 1.6 | −6.8 ± 1.8 |
trunk | 2.2 ± 1.6 | 2.2 ± 1.6 | 2.5 ± 1.7 | 3.3 ± 2.0 | 2.4 ± 1.9 | 2.0 ± 1.8 | 1.9 ± 1.6 | 2.2 ± 1.5 | |
H vs. T | −5.7 ± 1.9 | −0.4 ± 3.0 | 2.1 ± 1.6 | 3.2 ± 5.2 | −5.2 ± 2.0 | −9.8 ± 2.3 | −9.7 ± 2.3 | −9.1 ± 2.7 | |
LA | head | 2.6 ± 0.9 | 0.5 ± 1.4 | −0.9 ± 0.5 | −5.6 ± 1.0 | −6.9 ± 1.1 | −4.2 ± 1.0 | −1.3 ± 1.0 | 0.0 ± 1.0 |
trunk | 0.6 ± 1.1 | 0.4 ± 1.1 | 1.4 ± 1.1 | 0.3 ± 1.3 | −0.4 ± 1.2 | −0.7 ± 0.9 | −0.1 ± 1.0 | 0.6 ± 0.8 | |
H vs. T | 2.1 ± 1.5 | 0.3 ± 1.6 | −0.2 ± 1.8 | −3.1 ± 1.8 | −3.2 ± 1.8 | −1.7 ± 1.3 | −0.6 ± 1.1 | −0.4 ± 1.1 | |
RO | head | −12.0 ± 3.1 | −8.7 ± 2.1 | −1.9 ± 0.7 | 3.5 ± 1.3 | 7.3 ± 2.0 | 4.4 ± 1.5 | −1.9 ± 1.7 | −7.6 ± 3.4 |
trunk | −0.9 ± 1.8 | −0.8 ± 1.9 | 3.4 ± 2.9 | 6.9 ± 3.4 | 9.4 ± 4.7 | 6.4 ± 3.2 | 2.0 ± 2.2 | −0.8 ± 1.7 | |
H vs. T | −11.3 ± 3.7 | −8.1 ± 3.0 | −5.4 ± 2.8 | −2.9 ± 2.2 | −1.3 ± 3.0 | −0.9 ± 2.3 | −3.3 ± 2.9 | −7.8 ± 3.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roby-Brami, A.; Lefèvre Colau, M.-M.; Parry, R.; Acapo, S.; Rannou, F.; Roren, A. Orientation of the Head and Trunk During Functional Upper Limb Movement. Appl. Sci. 2020, 10, 2115. https://doi.org/10.3390/app10062115
Roby-Brami A, Lefèvre Colau M-M, Parry R, Acapo S, Rannou F, Roren A. Orientation of the Head and Trunk During Functional Upper Limb Movement. Applied Sciences. 2020; 10(6):2115. https://doi.org/10.3390/app10062115
Chicago/Turabian StyleRoby-Brami, Agnès, Marie-Martine Lefèvre Colau, Ross Parry, Sessi Acapo, Francois Rannou, and Alexandra Roren. 2020. "Orientation of the Head and Trunk During Functional Upper Limb Movement" Applied Sciences 10, no. 6: 2115. https://doi.org/10.3390/app10062115
APA StyleRoby-Brami, A., Lefèvre Colau, M.-M., Parry, R., Acapo, S., Rannou, F., & Roren, A. (2020). Orientation of the Head and Trunk During Functional Upper Limb Movement. Applied Sciences, 10(6), 2115. https://doi.org/10.3390/app10062115