Biostimulation in Desert Soils for Microbial-Induced Calcite Precipitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Chemical–Physical Characterization
2.2. Biostimulation of Indigenous Ureolytic Microbes
2.3. Solutions and Stimulation Media
2.4. Chemical Analysis of Stimulated Samples
2.5. Calcite Precipitation
3. Results
3.1. Chemical and Physical Characterization of Soils
3.2. Biostimulation of Indigenous Urea-Hydrolyzing Bacteria
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Lal, R. Sequestration of atmospheric CO2 in global carbon pools. Energy Environ. Sci. 2008, 1, 86–100. [Google Scholar] [CrossRef]
- Whitman, W.B.; Coleman, D.; Wiebe, W.J. Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA 1998, 95, 6578–6583. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, J.K.; Santamarina, J.C. Biological Considerations in Geotechnical Engineering. J. Geotech. Geoenviron. Eng. 2005, 131, 1222–1233. [Google Scholar] [CrossRef] [Green Version]
- Eilers, K.G.; Debenport, S.; Anderson, S.; Fierer, N. Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol. Biochem. 2012, 50, 58–65. [Google Scholar] [CrossRef]
- Gomez, M.G.; Graddy, C.M.R.; DeJong, J.; Nelson, D.C.; Tsesarsky, M. Stimulation of Native Microorganisms for Biocementation in Samples Recovered from Field-Scale Treatment Depths. J. Geotech. Geoenviron. Eng. 2018, 144. [Google Scholar] [CrossRef]
- Boquet, E.; Boronat, A.; Ramos-Cormenzana, A. Production of Calcite (Calcium Carbonate) Crystals by Soil Bacteria is a General Phenomenon. Nature 1973, 246, 527–529. [Google Scholar] [CrossRef]
- Dupraz, S.; Parmentier, M.; Ménez, B.; Guyot, F. Experimental and numerical modeling of bacterially induced pH increase and calcite precipitation in saline aquifers. Chem. Geol. 2009, 265, 44–53. [Google Scholar] [CrossRef]
- Mitchell, A.C.; Dideriksen, K.; Spangler, L.; Cunningham, A.B.; Gerlach, R. Microbially Enhanced Carbon Capture and Storage by Mineral-Trapping and Solubility-Trapping. Environ. Sci. Technol. 2010, 44, 5270–5276. [Google Scholar] [CrossRef] [Green Version]
- Van Paassen, L.A.; Daza, C.M.; Staal, M.; Sorokin, D.Y.; Van der Zon, W.; Van Loosdrecht, M.C.M. Potential soil reinforcement by biological denitrification. Ecol. Eng. 2010, 36, 168–175. [Google Scholar] [CrossRef]
- Martinez, B.C.; DeJong, J.; Ginn, T.R.; Montoya, B.M.; Barkouki, T.H.; Hunt, C.E.; Tanyu, B.F.; Major, D.W. Experimental Optimization of Microbial-Induced Carbonate Precipitation for Soil Improvement. J. Geotech. Geoenviron. Eng. 2013, 139, 587–598. [Google Scholar] [CrossRef]
- Martinez, B.; DeJong, J.; Ginn, T. Bio-geochemical reactive transport modeling of microbial induced calcite precipitation to predict the treatment of sand in one-dimensional flow. Comput. Geotech. 2014, 58, 1–13. [Google Scholar] [CrossRef]
- Phillips, A.J.; Cunningham, A.B.; Gerlach, R.; Hiebert, R.; Hwang, C.; Lomans, B.P.; Westrich, J.; Mantilla, C.; Kirksey, J.; Esposito, R.A.; et al. Fracture Sealing with Microbially-Induced Calcium Carbonate Precipitation: A Field Study. Environ. Sci. Technol. 2016, 50, 4111–4117. [Google Scholar] [CrossRef] [Green Version]
- Fujita, Y.; Taylor, J.L.; Wendt, L.M.; Reed, D.; Smith, R.W. Evaluating the Potential of Native Ureolytic Microbes To Remediate a90Sr Contaminated Environment. Environ. Sci. Technol. 2010, 44, 7652–7658. [Google Scholar] [CrossRef]
- De Muynck, W.; De Belie, N.; Verstraete, W. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 2010, 36, 118–136. [Google Scholar] [CrossRef]
- Lloyd, A.B.; Sheaffe, M.J. Urease activity in soils. Plant Soil 1973, 39, 71–80. [Google Scholar] [CrossRef]
- Mobley, H.L.; Hausinger, R.P. Microbial ureases: Significance, regulation, and molecular characterization. Microbiol. Rev. 1989, 53, 85–108. [Google Scholar] [CrossRef] [Green Version]
- DeJong, J.T.; Martinez, B.C.; Mortensen, B.M.; Nelson, D.C. Upscaling of Bio-Mediated Soil Improvement; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2009. [Google Scholar]
- Van Veen, J.A.; Van Overbeek, L.S.; Van Elsas, J.D. Fate and activity of microorganisms introduced into soil. Microbiol. Mol. Biol. Rev. 1997, 61, 121–135. [Google Scholar] [CrossRef]
- Whiffin, V.S.; Van Paassen, L.A.; Harkes, M.P. Microbial Carbonate Precipitation as a Soil Improvement Technique. Geomicrobiol. J. 2007, 24, 417–423. [Google Scholar] [CrossRef]
- Meyer, F.D.; Min, S.; Stetler, L.; Bang, S.S. Microbiologically-induced soil stabilization: Application of Sporosarcina pasteurii for fugitive dust control. In Geo-Frontiers 2011: Advances in Geotechnical Engineering; American Society of Civil Engineers: Dallas, TX, USA, 2011; pp. 4002–4011. [Google Scholar]
- Van Paassen, L.A. Bio-mediated ground improvement: From laboratory experiment to pilot applications. In Geo-Frontiers 2011: Advances in Geotechnical Engineering; American Society of Civil Engineers: Dallas, TX, USA, 2011; pp. 4099–4108. [Google Scholar]
- DeJong, J.; Soga, K.; Kavazanjian, E.; Burns, S.; Van Paassen, L.A.; Al Qabany, A.; Aydilek, A.; Bang, S.; Burbank, M.; Caslake, L.; et al. Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges. Géotechnique 2013, 63, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Atlas, R.M.; Bartha, R. Stimulated biodegradation of oil slicks using oleophilic fertilizers. Environ. Sci. Technol. 1973, 7, 538–541. [Google Scholar] [CrossRef]
- Gibson, S.A.; Sewell, G.W. Stimulation of Reductive Dechlorination of Tetrachloroethene in Anaerobic Aquifer Microcosms by Addition of Short-Chain Organic Acids or Alcohols. Appl. Environ. Microbiol. 1992, 58, 1392–1393. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, P.H.; Mueller, J.G.; Rogers, J.C.; Kremer, F.V.; Gläser, J.A. Oil spill bioremediation: Experiences, lessons and results from the Exxon Valdez oil spill in Alaska. Biodegradation 1992, 3, 315–335. [Google Scholar] [CrossRef]
- Seklemova, E.; Pavlova, A.; Kovacheva, K. Biostimulation-based bioremediation of diesel fuel: Field demonstration. Biodegradation 2001, 12, 311–316. [Google Scholar] [CrossRef]
- Fujita, Y.; Taylor, J.L.; Gresham, T.L.T.; Delwiche, M.E.; Colwell, F.S.; McLing, T.L.; Petzke, L.M.; Smith, R.W. Stimulation of Microbial Urea Hydrolysis in Groundwater to Enhance Calcite Precipitation. Environ. Sci. Technol. 2008, 42, 3025–3032. [Google Scholar] [CrossRef]
- Burbank, M.; Weaver, T.; Green, T.L.; Williams, B.C.; Crawford, R. Precipitation of Calcite by Indigenous Microorganisms to Strengthen Liquefiable Soils. Geomicrobiol. J. 2011, 28, 301–312. [Google Scholar] [CrossRef]
- Burbank, M.; Weaver, T.; Lewis, R.; Williams, T.; Williams, B.; Crawford, R. Geotechnical Tests of Sands Following Bioinduced Calcite Precipitation Catalyzed by Indigenous Bacteria. J. Geotech. Geoenviron. Eng. 2013, 139, 928–936. [Google Scholar] [CrossRef]
- McMillan, L.; Cuthbert, M.; Riley, M.; Handley-Sidhu, S.; Tobler, D.; Phoenix, V. Microbially driven fracture sealing for inhibiting contaminant transport at the field scale. In EGU General Assembly Conference Abstracts; Geophysical Research Abstracts: Munich, Germany, 2013. [Google Scholar]
- Gat, D.; Ronen, Z.; Tsesarsky, M. Soil Bacteria Population Dynamics Following Stimulation for Ureolytic Microbial-Induced CaCO3Precipitation. Environ. Sci. Technol. 2016, 50, 616–624. [Google Scholar] [CrossRef]
- Gomez, M.G.; Anderson, C.M.; Graddy, C.M.R.; DeJong, J.; Nelson, D.C.; Ginn, T.R. Large-Scale Comparison of Bioaugmentation and Biostimulation Approaches for Biocementation of Sands. J. Geotech. Geoenviron. Eng. 2017, 143, 04016124. [Google Scholar] [CrossRef]
- Drahorad, S.; Felix-Henningsen, P.; Eckhardt, K.-U.; Leinweber, P. Spatial carbon and nitrogen distribution and organic matter characteristics of biological soil crusts in the Negev desert (Israel) along a rainfall gradient. J. Arid Environ. 2013, 94, 18–26. [Google Scholar] [CrossRef]
- Ros, M.; Goberna, M.; Moreno, J.L.; Hernandez, T.; Garcia, C.; Insam, H.; Pascual, J.A. Molecular and physiological bacterial diversity of a semi-arid soil contaminated with different levels of formulated atrazine. Appl. Soil Ecol. 2006, 34, 93–102. [Google Scholar] [CrossRef]
- Chen, F.; Deng, C.; Song, W.; Zhang, D.; Al-Misned, F.A.; Mortuza, M.G.; Gadd, G.M.; Pan, X. Biostabilization of Desert Sands Using Bacterially Induced Calcite Precipitation. Geomicrobiol. J. 2016, 33, 243–249. [Google Scholar] [CrossRef]
- Van Paassen, L.A.; Ghose, R.; Van der Linden, T.J.M.; Van der Star, W.R.L.; Van Loosdrecht, M.C.M. Quantifying Biomediated Ground Improvement by Ureolysis: Large-Scale Biogrout Experiment. J. Geotech. Geoenviron. Eng. 2010, 136, 1721–1728. [Google Scholar] [CrossRef]
- Knorst, M.T.; Neubert, R.; Wohlrab, W. Analytical methods for measuring urea in pharmaceutical formulations. J. Pharm. Biomed. Anal. 1997, 15, 1627–1632. [Google Scholar] [CrossRef]
- DeJong, J.; Fritzges, M.B.; Nüsslein, K. Microbially Induced Cementation to Control Sand Response to Undrained Shear. J. Geotech. Geoenviron. Eng. 2006, 132, 1381–1392. [Google Scholar] [CrossRef]
- Cheng, L.; Cord-Ruwisch, R. In situ soil cementation with ureolytic bacteria by surface percolation. Ecol. Eng. 2012, 42, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Fujita, Y.; Petzke, L.M.; Taylor, M.R.; Taylor, J.L.; Tyler, T.L.; Smith, R.W. Characterizing microbial ureolytic activity in groundwater for the potential to facilitate calcite precipitation for remediation of strontium-90. Geochim. Cosmochim. Acta 2005, 69, A230. [Google Scholar]
- De Belie, N.; Wang, J. Bacteria-based repair and self-healing of concrete. J. Sustain. Cem. Mater. 2015, 5, 35–56. [Google Scholar] [CrossRef]
Element | Soil 1 (%wt) | Soil 2 (%wt) |
---|---|---|
Si | 76 | 47 |
Ca | 14 | 40 |
Fe | 10 | 13 |
Parameter | Soil 1 (μm) | Soil 2 (μm) |
---|---|---|
D10 | 136 ± 0.7 | 233 ± 12.8 |
D50 | 251 ± 2.8 | 442 ± 11.4 |
D90 | 467 ± 15.0 | 751 ± 29.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raveh-Amit, H.; Tsesarsky, M. Biostimulation in Desert Soils for Microbial-Induced Calcite Precipitation. Appl. Sci. 2020, 10, 2905. https://doi.org/10.3390/app10082905
Raveh-Amit H, Tsesarsky M. Biostimulation in Desert Soils for Microbial-Induced Calcite Precipitation. Applied Sciences. 2020; 10(8):2905. https://doi.org/10.3390/app10082905
Chicago/Turabian StyleRaveh-Amit, Hadas, and Michael Tsesarsky. 2020. "Biostimulation in Desert Soils for Microbial-Induced Calcite Precipitation" Applied Sciences 10, no. 8: 2905. https://doi.org/10.3390/app10082905
APA StyleRaveh-Amit, H., & Tsesarsky, M. (2020). Biostimulation in Desert Soils for Microbial-Induced Calcite Precipitation. Applied Sciences, 10(8), 2905. https://doi.org/10.3390/app10082905