Wind Tunnel Measurements of Surface Shear Stress on an Isolated Dune Downwind a Bridge
Abstract
:1. Introduction
2. Methods
2.1. Experimental Setup
2.2. Surface Shear Stress Sensor
2.3. Procedure of Wind Tunnel Experiment
- Installed the model of sand dune in the wind tunnel. The Irwin sensors were mounted at position shows in Figure 3. Turned on the fan and measured the surface shear stress over 3 min. The free-stream wind velocities were set as 8 m s−1, 12 m s−1 and 15 m s−1, which made the wind velocities at the height of the bridge surface consistent with field actuality (Figure 4).
- Turned off the fan and installed the model of bridge 1.5 H upwind the sand dune model. Restarted the fan and set to the same target speed in Step 2.
- Turned off the fan and changed the position of the bridge model. Restarted the fan and set to the same target speed in Step 2.
- Moved the position of Irwin sensors in the y-direction and started from Step 1 for the next run.
3. Results
3.1. Changes in Averaged Surface Shear Stress
3.2. Changes in the Fluctuation of Surface Shear Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, K.; Qu, J.-J.; Liao, K.; Niu, Q.; Han, Q.-J. Damage by Wind-Blown sand and its control along Qinghai-Tibet Railway in China. Aeolian Res. 2010, 1, 143–146. [Google Scholar] [CrossRef]
- Yang, Y.H.; Zhu, B.Z.; Jiang, F.Q.; Wang, X.Q.; Li, Y. Prevention and management of Wind-Blown sand damage along Qinghai-Tibet Railway in Cuonahu Lake area. Sci. Cold Arid Reg. 2012, 4, 132–139. [Google Scholar] [CrossRef]
- Cheng, J.-J.; Xue, C.-X. The Sand-Damage–Prevention engineering system for the railway in the desert region of the Qinghai-Tibet plateau. J. Wind. Eng. Ind. Aerodyn. 2014, 125, 30–37. [Google Scholar] [CrossRef]
- Zheng, X.J.; Ma, G.S.; Huang, N. Shelter effect of Wind-Break wall and its impact on sand deposition. J. Desert Res. 2007, 31, 21–27. [Google Scholar]
- Huang, N.; Gong, K.; Xu, B.; Zhao, J.; Dun, H.; He, W.; Xin, G. Investigations into the law of sand particle accumulation over railway subgrade with Wind-Break wall. Eur. Phys. J. E 2019, 42, 145. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Huang, N.; Xu, B.; Wang, W. Numerical simulation of Wind-Sand movement in the reversed flow region of a sand dune with a bridge built downstream. Eur. Phys. J. E 2018, 41, 53. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.B. Research achievements in Aeolian physics in China for last five decades. J. Desert Res. 2005, 25, 795–815. [Google Scholar]
- Wang, T. Fifty-Year history of China desert sciences. J. Desert Res. 2005, 25, 145–165. [Google Scholar]
- Bagnold, R.A. The Physics of Blown Sand and Desert Dunes; Methuen & Co., Ltd.: London, UK, 1941. [Google Scholar]
- Lyles, L.; Schrandt, R.L.; Schmeidler, N.F. How aerodynamic roughness elements control sand movement. Trans. ASAE 1974, 17, 134–139. [Google Scholar] [CrossRef]
- Greeley, R.; Iversen, J.D. Wind as a Geological Process on Earth, Mars, Venus and Titan; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Raupach, M.; Gillette, D.A.; Leys, J. The effect of roughness elements on wind erosion threshold. J. Geophys. Res. Space Phys. 1993, 98, 3023–3029. [Google Scholar] [CrossRef]
- Sutton, S.L.F.; McKenna-Neuman, C. Variation in bed level shear stress on surfaces sheltered by nonerodible roughness elements. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Walter, B.; Gromke, C.; Leonard, K.C.; Manes, C.; Lehning, M. Spatio-Temporal surface Shear-Stress variability in live plant canopies and cube arrays. Bound. Layer Meteorol. 2012, 143, 337–356. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.S.; Haff, P.K. Wind modification and bed response during saltation of sand in air. Acta Mech. 1991, 1, 21–51. [Google Scholar]
- Shao, Y.; Li, A. Numerical modelling of saltation in the atmospheric surface layer. Bound. Layer Meteorol. 1999, 91, 199–225. [Google Scholar] [CrossRef]
- Doorschot, J.J.J.; Lehning, M. Equilibrium saltation: Mass fluxes, aerodynamic entrainment, and dependence on grain properties. Bound. Layer Meteorol. 2002, 104, 111–130. [Google Scholar] [CrossRef]
- Parteli, E.J.; Kroy, K.; Tsoar, H.; Andrade, J.; Pöschel, T. Morphodynamic modeling of Aeolian dunes: Review and future plans. Eur. Phys. J. Spéc. Top. 2014, 223, 2269–2283. [Google Scholar] [CrossRef]
- Li, G.; Zhang, J.; Herrmann, H.J.; Shao, Y.; Huang, N. Study of aerodynamic grain entrainment in Aeolian transport. Geophys. Res. Lett. 2020. [Google Scholar] [CrossRef]
- Sun, W.; Huang, N.; He, W. Turbulence burst over four Micro-Topographies in the wind tunnel. Catena 2017, 148, 138–144. [Google Scholar] [CrossRef]
- Walker, I.J.; Nickling, W.G. Simulation and measurement of surface shear stress over isolated and closely spaced transverse dunes in a wind tunnel. Earth Surf. Process Landf. 2003, 28, 1111–1124. [Google Scholar] [CrossRef]
- Walter, B.; Gromke, C.; Lehning, M. Shear-Stress partitioning in live plant canopies and modifications to raupach’s model. Bound. Layer Meteorol. 2012, 144, 217–241. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Qu, J.; Han, Q.; Xie, S.; Kai, K.; Niu, Q.; An, Z. Wind tunnel simulation of windblown sand along china’s Qinghai-Tibet railway. Land Degrad. Dev. 2012, 25, 244–250. [Google Scholar] [CrossRef]
- Irwin, H. A simple omnidirectional sensor for Wind-Tunnel studies of pedestrian-level winds. J. Wind. Eng. Ind. Aerodyn. 1981, 7, 219–239. [Google Scholar] [CrossRef]
- Luo, W.; Lu, J.; Qian, G.; Dong, Z. Influence of the gap ratio on variations in the surface shear stress and on sand accumulation in the lee of two Side-By-Side obstacles. Environ. Earth Sci. 2016, 75, 766. [Google Scholar] [CrossRef]
- Gillies, J.A.; Nickling, W.; King, J. Aeolian sediment transport through large patches of roughness in the atmospheric inertial sublayer. J. Geophys. Res. Space Phys. 2006, 111, F02006. [Google Scholar] [CrossRef]
- King, J.; Nickling, W.; Gillies, J. Aeolian shear stress ratio measurements within Mesquite-Dominated landscapes of the Chihuahuan Desert, New Mexico, USA. Geomorphology 2006, 82, 229–244. [Google Scholar] [CrossRef]
- Gillies, J.A.; Nickling, W.G.; King, J. Shear stress partitioning in large patches of roughness in the atmospheric inertial sublayer. Bound. Layer Meteorol. 2006, 122, 367–396. [Google Scholar] [CrossRef]
- Walter, B.; Gromke, C.; Leonard, K.; Clifton, A.; Lehning, M. Spatially resolved skin friction velocity measurements using Irwin sensors: A calibration and accuracy analysis. J. Wind. Eng. Ind. Aerodyn. 2012, 104, 314–321. [Google Scholar] [CrossRef]
- Luo, W.; Dong, Z.; Qian, G.; Lu, J. Near-Wake flow patterns in the lee of adjacent obstacles and their implications for the formation of sand drifts: A wind tunnel simulation of the effects of gap spacing. Geomorphology 2014, 213, 190–200. [Google Scholar] [CrossRef]
- Kok, J.F.; Renno, N.O. A comprehensive numerical model of steady state saltation (COMSALT). J. Geophys. Res. Space Phys. 2009, 114, D17204. [Google Scholar] [CrossRef] [Green Version]
- Sumner, D. Two circular cylinders in Cross-Flow: A review. J. Fluids Struct. 2010, 26, 849–899. [Google Scholar] [CrossRef]
Velocity Profile Technique: | Irwin Sensor Results: | ||||
---|---|---|---|---|---|
8 m s−1 | 0.267 m s−1 | 0.086 N m2 | 0.261 m s−1 | 0.082 N m2 | 0.022 N m2 |
12 m s−1 | 0.389 m s−1 | 0.182 N m2 | 0.381 m s−1 | 0.174 N m2 | 0.035 N m2 |
15 m s−1 | 0.465 m s−1 | 0.260 N m2 | 0.464 m s−1 | 0.259 N m2 | 0.054 N m2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Dun, H.; He, W.; Huang, N. Wind Tunnel Measurements of Surface Shear Stress on an Isolated Dune Downwind a Bridge. Appl. Sci. 2020, 10, 4022. https://doi.org/10.3390/app10114022
Wang W, Dun H, He W, Huang N. Wind Tunnel Measurements of Surface Shear Stress on an Isolated Dune Downwind a Bridge. Applied Sciences. 2020; 10(11):4022. https://doi.org/10.3390/app10114022
Chicago/Turabian StyleWang, Wenbo, Hongchao Dun, Wei He, and Ning Huang. 2020. "Wind Tunnel Measurements of Surface Shear Stress on an Isolated Dune Downwind a Bridge" Applied Sciences 10, no. 11: 4022. https://doi.org/10.3390/app10114022
APA StyleWang, W., Dun, H., He, W., & Huang, N. (2020). Wind Tunnel Measurements of Surface Shear Stress on an Isolated Dune Downwind a Bridge. Applied Sciences, 10(11), 4022. https://doi.org/10.3390/app10114022