High-Temperature Mineral Formation after Firing Clay Materials Associated with Mined Coal in Teruel (Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mine Spoils
2.2. Fired Samples
3. Results and Discussion
3.1. Mine Spoils
3.2. Fired Bodies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jordá, J.D.; Vidal, M.M.J.; Ibanco-Cañete, R.; Montero, M.; Labarta, J.A.; Sanchez, A.S.; Cerdán, M. Mineralogical analysis of ceramic tiles by FTIR: A quantitative attempt. Appl. Clay Sci. 2015, 115, 1–8. [Google Scholar] [CrossRef]
- Dondi, M.; Raimondo, M.; Zanelli, C. Clays and bodies for ceramic tiles: Reappraisal and technological classification. Appl. Clay Sci. 2014, 96, 91–109. [Google Scholar] [CrossRef]
- Vidal, M.M.J.; Meseguer, S.; Pardo, F.; Montero, M. Properties and possible ceramic uses of clays from lignite mine spoils of NW Spain. Appl. Clay Sci. 2015, 118, 158–161. [Google Scholar] [CrossRef] [Green Version]
- Laita, E.; Bauluz, B.; Yuste, A. High-Temperature Mineral Phases Generated in Natural Clinkers by Spontaneous Combustion of Coal. Minerals 2019, 9, 213. [Google Scholar] [CrossRef] [Green Version]
- Bauluz, B.; Mayayo, M.J.; Yuste, A.; Fernández-Nieto, C.; López, J.M.G. TEM study of mineral transformations in fired carbonated clays: Relevance to brick making. Clay Miner. 2004, 39, 333–344. [Google Scholar] [CrossRef]
- Bastida, J.; Lores, M.T.; De la Torre, J.; Pardo, P.; Buendia, Y.A.M.L. Microestructural modification of Clay minerals in ball clays from Teruel by thermal treatment. Bol. Soc. Esp. Cerám. Vidr. 2006, 49, 38–45. [Google Scholar]
- Vidal, M.M.J.; Montero, M.; Meseguer, S.; Sanfeliu, T. Influence of firing temperature and mineralogical composition on bending strength and porosity of ceramic tile bodies. Appl. Clay Sci. 2008, 42, 266–271. [Google Scholar] [CrossRef]
- Meseguer, S.; Vidal, M.M.J.; Sanfeliu, T. Use of mine spoils from Teruel coal mining district (NE, Spain). Environ. Earth Sci. 2008, 56, 845–853. [Google Scholar] [CrossRef]
- Meseguer, S.; Sanfeliu, T.; Vidal, M.M.J. Classification and statistical analysis of mine spoils chemical composition from Oliete basin (Teruel, NE Spain). Environ. Earth Sci. 2008, 56, 1461–1466. [Google Scholar] [CrossRef]
- Jordán, M.; Boix, A.; Sanfeliu, T.; De La Fuente, C. Firing transformations of cretaceous clays used in the manufacturing of ceramic tiles. Appl. Clay Sci. 1999, 14, 225–234. [Google Scholar] [CrossRef]
- Hillier, S. Quantitative analysis of clays and other minerals in sandstones by X-ray power diffraction (XRPD). Int. Assoc. Sedimentol. Publ. 2003, 34, 213–251. [Google Scholar]
- Laita, E.; Bauluz, B. Mineral and textural transformations in aluminium-rich clays during ceramic firing. Appl. Clay Sci. 2018, 152, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, S.; Gualtieri, M.L. The use of illitic clays in the production of stoneware tile ceramics. Appl. Clay Sci. 2006, 32, 73–81. [Google Scholar] [CrossRef]
- Sanfeliu, T.; Vidal, M.M.J. Geological and environmental management of ceramic clay quarries: A review. Environ. Earth Sci. 2008, 57, 1613–1618. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Cultrone, G.; Navas, A.S.; Sebastian, E. TEM study of mullite growth after muscovite breakdown. Am. Mineral. 2003, 88, 713–724. [Google Scholar] [CrossRef]
Series (%) | Quartz | Kaolinite | Illite/Muscovite | Feldspars | Calcite/Dolomite | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Range | Mean | Range | Mean | Range | Mean | Range | Mean | Range | |
OE | 19.8 | 48–5 | 53.6 | 90–20 | 20.5 | 40–5 | 1.4 | 3–0 | 2.2 | 7–0 |
AA | 40.3 | 59–17 | 35.8 | 49–17 | 19.6 | 50–8 | 0.9 | 6–0 | - |
Series (%) | Kaolinite | Illite | ||
---|---|---|---|---|
Mean | Range | Mean | Range | |
OE | 80.5 | 96–45 | 19.5 | 60–5 |
AA | 65.3 | 80–39 | 34.7 | 65–21 |
Series | SiO2 | Al2O3 | CaO | MgO | K2O | Fe2O3 | LOI | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Range | Mean | Range | Mean | Range | Mean | Range | Mean | Range | Mean | Range | Mean | Range | |
OE | 55.5 | 64–41 | 25.7 | 33–19 | 0.72 | 3.0–0.2 | 0.70 | 1.8–0.4 | 1.92 | 3.5–0.6 | 4.38 | 8.2–1.3 | 15.8 | 17.2–6.2 |
AA | 64.6 | 70–58 | 20.71 | 24–13 | 0.41 | 0.6–0.2 | 0.41 | 0.6–0.2 | 2.09 | 3.8–0.1 | 3.12 | 4.5–1.3 | 8.59 | 10–4.8 |
T (°C)/Mineral Phase (%) | Mullite | Quartz | Hematite | Spinel/Hercynite | Vitreous Phase |
---|---|---|---|---|---|
Serie OE | |||||
995 | 18 | 15 | 5 | 5 | 57 |
1050 | 23 | 10 | 7 | 4 | 56 |
1100 | 28 | 6 | 9 | 3 | 54 |
1150 | 39 | 2 | 12 | 1 | 46 |
Serie AA | |||||
995 | 8 | 21 | 9 | 7 | 55 |
1050 | 11 | 11 | 7 | 5 | 66 |
1100 | 17 | 8 | 12 | 3 | 60 |
1150 | 28 | 4 | 19 | 2 | 47 |
Sample | T (°C) | VT (mL/g) | ST (m2/g) | (g/mL) | (g/mL) | ε | Kp.10–16 (m) | r.10–8 (m) |
---|---|---|---|---|---|---|---|---|
OE | 995 | 0.142 | 2.09 | 1.895 | 2.603 | 0.375 | 8.72 | 13.44 |
1050 | 0.074 | 1.78 | 2.186 | 2.577 | 0.180 | 1.59 | 8.22 | |
1100 | 0.135 | 2.29 | 1.944 | 2.601 | 0.344 | 6.01 | 11.97 | |
1150 | 0.030 | 1.684 | 2.243 | 2.480 | 0.083 | 0.06 | 5.98 | |
AA | 995 | 0.143 | 3.505 | 1.919 | 2.668 | 0.285 | 2.43 | 8.40 |
1050 | 0.100 | 1.917 | 2.125 | 2.696 | 0.222 | 3.25 | 10.40 | |
1100 | 0.061 | 1.345 | 2.286 | 2.620 | 0.142 | 1.32 | 8.86 | |
1150 | 0.038 | 1.745 | 2.352 | 2.581 | 0.092 | 0.25 | 4.33 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jordán, M.M.; Meseguer, S.; Pardo, F.; Montero, M.A. High-Temperature Mineral Formation after Firing Clay Materials Associated with Mined Coal in Teruel (Spain). Appl. Sci. 2020, 10, 3114. https://doi.org/10.3390/app10093114
Jordán MM, Meseguer S, Pardo F, Montero MA. High-Temperature Mineral Formation after Firing Clay Materials Associated with Mined Coal in Teruel (Spain). Applied Sciences. 2020; 10(9):3114. https://doi.org/10.3390/app10093114
Chicago/Turabian StyleJordán, Manuel Miguel, Sergio Meseguer, Francisco Pardo, and María Adriana Montero. 2020. "High-Temperature Mineral Formation after Firing Clay Materials Associated with Mined Coal in Teruel (Spain)" Applied Sciences 10, no. 9: 3114. https://doi.org/10.3390/app10093114
APA StyleJordán, M. M., Meseguer, S., Pardo, F., & Montero, M. A. (2020). High-Temperature Mineral Formation after Firing Clay Materials Associated with Mined Coal in Teruel (Spain). Applied Sciences, 10(9), 3114. https://doi.org/10.3390/app10093114