Numerical Simulations of Novel Conning Designs for Future Super-Large Wind Turbines
Abstract
:1. Introduction
2. Modeling and Methods
2.1. Modelling of Different Cone Configurations
2.2. Mesh Structure and CFD Method
3. Results and Discussions
3.1. Four Configurations of Coning Near the Root: Ttrans = 5/R and Ccone = ±4, ±8
3.1.1. Force Performances
3.1.2. Flow Field Analysis
3.2. Special Coned Configurations: C4S0, C4S1, C4S2, C4, C-4S0, C-4S1, C-4 S2 and C-4
3.2.1. Overall Force Performance
3.2.2. Distributed Force Performances
3.2.3. Flow Field Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fingersh, L.; Hand, M.; Laxson, A. Wind Turbine Design Cost and Scaling Model; Office of Scientific and Technical Information (OSTI): Oak Ridge, TN, USA, 2006.
- Loth, E.; Steele, A.; Ichter, B.; Selig, M.; Moriarty, P.J. Segmented Ultralight Pre-Aligned Rotor for Extreme-Scale Wind Turbines. In Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, USA, 9–12 January 2012. [Google Scholar] [CrossRef] [Green Version]
- Barlas, T.K.; Van Kuik, G.A.M. Review of state of the art in smart rotor control research for wind turbines. Prog. Aerosp. Sci. 2010, 46, 1–27. [Google Scholar] [CrossRef]
- Barnes, R.; Morozov, E. Structural optimisation of composite wind turbine blade structures with variations of internal geometry configuration. Compos. Struct. 2016, 152, 158–167. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Q.; Shen, W.; Pang, X.; Li, S.; Guo, X. Structural optimization study of composite wind turbine blade. Mater. Des. 2013, 46, 247–255. [Google Scholar] [CrossRef]
- Sun, Z.; Sessarego, M.; Chen, J.; Shen, W. Design of the OffWindChina 5 MW Wind Turbine Rotor. Energies 2017, 10, 777. [Google Scholar] [CrossRef] [Green Version]
- Crawford, C.; Platts, J. Updating and Optimization of a Coning Rotor Concept. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 9–12 January 2006; pp. 9–12. [Google Scholar] [CrossRef]
- Steele, A.; Ichter, B.; Qin, C.; Loth, E.; Selig, M.; Moriarty, P. Aerodynamics of an Ultra light Load-Aligned Rotor for Extreme-Scale Wind Turbines. In Proceedings of the 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Grapevine, TX, USA, 7–10 January 2013. [Google Scholar]
- Noyes, C.; Qin, C.; Loth, E. Pre-aligned downwind rotor for a 13.2 MW wind turbine. Renew. Energy 2018, 116, 749–754. [Google Scholar] [CrossRef]
- Noyes, C.; Qin, C.; Loth, E. Analytic analysis of load alignment for coning extreme-scale rotors. Wind. Energy 2020, 23, 357–369. [Google Scholar] [CrossRef]
- Qin, C.; Loth, E.; Zalkind, D.S.; Pao, L.Y.; Yao, S.; Griffith, D.T.; Selig, M.S.; Damiani, R. Downwind coning concept rotor for a 25 MW offshore wind turbine. Renew. Energy 2020, 156, 314–327. [Google Scholar] [CrossRef]
- Wanke, G.; Bergami, L.; Larsen, T.J.; Hansen, M.H. Changes in design driving load cases: Operating an upwind turbine with a downwind rotor configuration. Wind. Energy 2019, 22, 1500–1511. [Google Scholar] [CrossRef]
- Bortolotti, P.; Kapila, A.; Bottasso, C.L. Comparison between upwind and downwind designs of a 10 MW wind turbine rotor. Wind. Energy Sci. 2019, 4, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Ning, A.; Petch, D. Integrated design of downwind land-based wind turbines using analytic gradients. Wind. Energy 2016, 19, 2137–2152. [Google Scholar] [CrossRef] [Green Version]
- Mikkelsen, R.; Sørensen, J.N.; Shen, W.Z. Modelling and analysis of the flow field around a coned rotor. Wind. Energy 2001, 4, 121–135. [Google Scholar] [CrossRef]
- Madsen, H.A.; Bak, C.; Døssing, M.; Mikkelsen, R.F.; Øye, S. Validation and modification of the Blade Element Momentum theory based on comparisons with actuator disc simulations. Wind. Energy 2010, 13, 373–389. [Google Scholar] [CrossRef]
- Crawford, C. Re-examining the precepts of the blade element momentum theory for coning rotors. Wind. Energy 2006, 9, 457–478. [Google Scholar] [CrossRef]
- Madsen, H.A.; Rasmussen, F. The influence on energy conversion and induction from large blade deflections. In Proceedings of the 1999 European Wind Energy Conference and Exhibition, Nice, France, 1–5 March 1999. [Google Scholar]
- Farhan, A.; Hassanpour, A.; Burns, A.; Motlagh, Y.G. Numerical study of effect of winglet planform and airfoil on a horizontal axis wind turbine performance. Renew. Energy 2019, 131, 1255–1273. [Google Scholar] [CrossRef]
- Chattot, J.-J. Effects of blade tip modifications on wind turbine performance using vortex model. Comput. Fluids 2009, 38, 1405–1410. [Google Scholar] [CrossRef]
- Shen, X.; Chen, J.-G.; Zhu, X.-C.; Liu, P.-Y.; Du, Z.-H. Multi-objective optimization of wind turbine blades using lifting surface method. Energy 2015, 90, 1111–1121. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Zeng, P.; Lei, L. A novel folding blade of wind turbine rotor for effective power control. Energy Convers. Manag. 2015, 101, 52–65. [Google Scholar] [CrossRef]
- Kress, C.; Chokani, N.; Abhari, R. Downwind wind turbine yaw stability and performance. Renew. Energy 2015, 83, 1157–1165. [Google Scholar] [CrossRef]
- Kress, C.; Chokani, N.; Abhari, R.S. Design Considerations of rotor cone angle for downwind wind turbines. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Montreal, QC, Canada, 15–19 June 2015. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, W.; Shen, W.; Zhong, W.; Cao, J.; Tao, Q. Aerodynamic Analysis of Coning Effects on the DTU 10 MW Wind Turbine Rotor. Energies 2020, 13, 5753. [Google Scholar] [CrossRef]
- Zahle, F.; Bak, C.; Sørensen, N.N.; Guntur, S.; Troldborg, N. Comprehensive Aerodynamic Analysis of a 10 MW Wind Turbine Rotor Using 3D CFD. In Proceedings of the 32nd ASME Wind Energy Symposium, National Harbor, MD, USA, 13–17 January 2014. [Google Scholar] [CrossRef]
- The DTU 10MW Reference Wind Turbine Project Site. Available online: https://rwt.windenergy.dtu.dk/dtu10mw/dtu-10mw-rwt (accessed on 6 November 2018).
- Jost, E.; Lutz, T.; Krämer, E. Steady and Unsteady CFD Power Curve Simulations of Generic 10 MW Turbines. In Proceedings of the 11th EAWE PhD Seminar on Wind Energy in Europe, Stuttgart, Germany, 23–25 September 2015. [Google Scholar]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, N.N. General Purpose Flow Solver Applied to Flow over Hills. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark, September 1995. [Google Scholar]
- Jost, E.; Klein, L.; Leipprand, H.; Lutz, T.; Krämer, E. Extracting the angle of attack on rotor blades from CFD simulations. Wind. Energy 2018, 21, 807–822. [Google Scholar] [CrossRef]
- Rahimi, H.; Schepers, J.; Shen, W.; García, N.R.; Schneider, M.; Micallef, D.; Ferreira, C.S.; Jost, E.; Klein, L.; Herráez, I. Evaluation of different methods for determining the angle of attack on wind turbine blades with CFD results under axial inflow conditions. Renew. Energy 2018, 125, 866–876. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.O.; Sørensen, N.N.; Michelsen, J. Extraction of lift, drag and angle of attack from computed 3-D viscous flow around a rotating blade. In Proceedings of the 1997 European Wind Energy Conference, Dublin, Ireland, 6–9 October 1997. [Google Scholar]
Wind Speed (m/s) | Pitch (Degree) | Rotational Speed (RPM) |
---|---|---|
9.000 | 0.000 | 7.229 |
Straight | Ccone = 8 | Ccone = −8 | Ccone = 4 | Ccone = −4 | |
---|---|---|---|---|---|
T(KN) δT | 1046.06 | 1057.24 | 1025.85 | 1060.77 | 998.63 |
0.00% | 1.07% | −1.93% | 1.41% | −4.53% | |
Q(KNm) δQ | 7283.11 | 7254.96 | 7268.08 | 7195.15 | 7205.48 |
0.00% | −0.39% | −0.21% | −1.21% | −1.07% | |
QT(m) δQT | 6.96 | 6.86 | 7.08 | 6.78 | 7.22 |
0.00% | −1.44% | 1.76% | −2.58% | 3.63% |
Straight | C4S2 | C4 | C4S0 | C4S1 | C-4S1 | C-4S0 | C-4 | C-4S2 | |
---|---|---|---|---|---|---|---|---|---|
T(KN) δT | 1046.06 | 1051.37 | 1061.10 | 1054.99 | 1032.59 | 1040.55 | 1031.22 | 1005.89 | 969.73 |
0% | 0.51% | 1.44% | 0.85% | −1.29% | −0.53% | −1.42% | −3.84% | −7.30% | |
Q(KNm) δQ | 7283.11 | 7055.26 | 7197.34 | 7261.64 | 7254.33 | 7250.16 | 7280.18 | 7242.09 | 7140.14 |
0% | −3.13% | −1.18% | −0.29% | −0.40% | −0.45% | −0.04% | −0.56% | −1.96% | |
QT(m) δQT | 6.96 | 6.71 | 6.78 | 6.88 | 7.03 | 6.97 | 7.06 | 7.20 | 7.36 |
0% | −3.62% | −2.58% | −1.14% | 0.90% | 0.07% | 1.40% | 3.41% | 5.75% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Zhu, W.; Shen, W.; Tao, Q.; Cao, J.; Li, X. Numerical Simulations of Novel Conning Designs for Future Super-Large Wind Turbines. Appl. Sci. 2021, 11, 147. https://doi.org/10.3390/app11010147
Sun Z, Zhu W, Shen W, Tao Q, Cao J, Li X. Numerical Simulations of Novel Conning Designs for Future Super-Large Wind Turbines. Applied Sciences. 2021; 11(1):147. https://doi.org/10.3390/app11010147
Chicago/Turabian StyleSun, Zhenye, Weijun Zhu, Wenzhong Shen, Qiuhan Tao, Jiufa Cao, and Xiaochuan Li. 2021. "Numerical Simulations of Novel Conning Designs for Future Super-Large Wind Turbines" Applied Sciences 11, no. 1: 147. https://doi.org/10.3390/app11010147
APA StyleSun, Z., Zhu, W., Shen, W., Tao, Q., Cao, J., & Li, X. (2021). Numerical Simulations of Novel Conning Designs for Future Super-Large Wind Turbines. Applied Sciences, 11(1), 147. https://doi.org/10.3390/app11010147