Influence of Carbon Uniformity on Its Characteristics and Adsorption Capacities of CO2 and CH4 Gases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Aerogels
2.3. Preparation of Carbonized and Activated Carbon Aerogels
2.4. Mixing of MWCNTs and AC-RFAs
2.5. Characterizations
3. Theory
3.1. Equilibrium Adsorption Isotherms
3.2. Selectivity
4. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Littlefield, J.A.; Marriott, J.; Schivley, G.A.; Skone, T.J. Synthesis of recent ground-level methane emission measurements from the U.S. natural gas supply chain. J. Clean. Prod. 2018, 148, 118–126. [Google Scholar] [CrossRef]
- Olajossy, A. Some parameters of coal methane system that cause very slow release of methane from virgin coal beds (CBM). Int. J. Min. Sci. Technol. 2017, 27, 321–326. [Google Scholar] [CrossRef]
- Rahman, K.A.; Ramesh, A. Effect of reducing the methane concentration on the combustion and performance of a biogas diesel predominantly premixed charge compression ignition engine. Fuel 2017, 206, 117–132. [Google Scholar] [CrossRef]
- Ahoughalandari, B.; Cabral, A.R. Landfill gas distribution at the base of passive methane oxidation biosystems: Transient state analysis of several configurations. Waste Manag. 2017, 69, 298–314. [Google Scholar] [CrossRef] [PubMed]
- Rios, R.B.; Stragliotto, F.M.; Peixoto, H.R.; Torres, A.E.B.; Bastos-Neto, M.; Azevedo, D.C.S.; Cavalcante, C.L., Jr. Studies on the adsorption behavior of CO2-CH4 mixtures using activated carbon. Braz. J. Chem. Eng. 2013, 30, 939–951. [Google Scholar] [CrossRef]
- Cavenati, S.; Grande, C.A.; Alírio, E.R. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data 2004, 49, 1095–1101. [Google Scholar] [CrossRef]
- Gholipour, M.M.F.G. Gas adsorption separation of CO2/CH4 system using zeolite 5A. Microporous Mesoporous Mater. 2014, 200, 1–10. [Google Scholar]
- Gholipour, F.; Mofarahi, M. Adsorption equilibrium of methane and carbon dioxide on zeolite 13X: Experimental and thermodynamic modeling. J. Supercrit. Fluids 2016, 111, 47–54. [Google Scholar] [CrossRef]
- Xu, X.; Song, C.; Miller, B.G.; Scaroni, A.W. Adsorption separation of carbon dioxide from flds gas of natural gas- fired boiler by a novel nanoporous “molecular basket” adsorbent. Fuel Process Technol. 2005, 86, 1457–1472. [Google Scholar] [CrossRef]
- Iarikov, D.D.; Hacarlioglu, P.; Oyama, S.T. Supported room temperature ionic liquid membranes for CO2/CH4 separation. Chem. Eng. J. 2011, 166, 401–406. [Google Scholar] [CrossRef]
- Ghoufi, A.; Gaberova, L.; Rouquerol, J.; Vincent, D.; Llewllyn, P.; Maurin, G. Adsorption of CO2, CH4 and their binary mixture in faujasite NaY: A combination of molecular simulations with gravimetry–manometry and microcalorimetry measurements. Microporous Mesoporous Mater. 2009, 119, 117–128. [Google Scholar] [CrossRef]
- Nazari, L.; Sarathy, S.; Santoro, D.; Ho, D.; Ray, M.B.; Xu, C.C. Direct Thermochemical Liquefaction for Energy Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 67–100. [Google Scholar]
- Bae, Y.; Mulfort, K.L.; Frost, H.; Ryan, P.; Punnathanam, S.; Broadbelt, L.J.; Hupp, J.T.; Snurr, R.Q. Separation of CO2 from CH4 using mixed-Ligand metal-organic frameworks. Langmuir 2008, 24, 8592–8598. [Google Scholar] [CrossRef]
- Zhang, X.-Q.; Li, W.-C.; Lu, A.-H. Designed porous carbon materials for efficient CO2 adsorption and separation. New Carbon Mater. 2015, 30, 481–501. [Google Scholar] [CrossRef]
- Wiśniewski, M.; Koter, S.; Terzyk, A.P.; Włoch, J.; Kowalczyk, P. CO2—Reinforced nanoporous carbon potential energy field during CO2/CH4 mixture adsorption. A comprehensive volumetric, in-situ IR, and thermodynamic insight. Carbon 2017, 122, 185–193. [Google Scholar] [CrossRef]
- Jusoh, N.; Yeong, Y.F.; Lau, K.K.; Azmi, M.S. Fabrication of silanated zeolite T/6FDA-durene composite membranes for CO2/CH4 separation. J. Clean Prod. 2017, 166, 1043–1058. [Google Scholar] [CrossRef]
- Venna, S.R.; Carreon, M.A. Metal organic framework membranes for carbon dioxide separation. Chem. Eng. Sci. 2015, 124, 3–19. [Google Scholar] [CrossRef]
- Kayal, S.; Chakraborty, A. Activated carbon (type Maxsorb-III) and MIL-101(Cr) metal organic framework based composite adsorbent for higher CH4 storage and CO2 capture. Chem. Eng. J. 2018, 334, 780–788. [Google Scholar] [CrossRef]
- Bello, G.; García, R.; Arriagada, R.; Sepúlveda-Escribano, A.; Rodriguez-Reinoso, F. Carbon molecular sieves from Eucalyptus globulus charcoal. Microporous Mesoporous Mater. 2002, 56, 139–145. [Google Scholar] [CrossRef]
- Arriagada, R.; Bello, G.; García, R.; Rodriguez-Reinoso, F. Carbon molecular sieves from hardwood carbon pellets. The influence of carbonization temperature in gas separation properties. Microporous Mesoporous Mater. 2005, 81, 161–167. [Google Scholar] [CrossRef]
- Lutyński, M.; Waszczuk, P.; Słomski, P.; Szczepańsk, J. CO2 sorption of Pomeranian gas bearing shales—The effect of clay minerals. Energy Procedia 2017, 125, 457–466. [Google Scholar] [CrossRef]
- Awadallah, F.A.; Al-Muhtaseb, S.A. Carbon dioxide sequestration and methane removal from exhaust gases using resorcinol–formaldehyde activated carbon xerogel. Adsorption 2013, 19, 967–977. [Google Scholar] [CrossRef]
- Yu, H.; Zhou, L.; Cheng, J.; Hu, Q. Predictions of the adsorption equilibrium of methane/carbon dioxide binary gas on coals using Langmuir and Ideal Adsorbed Solution. Int. J. Coal Geol. 2008, 73, 115–129. [Google Scholar] [CrossRef]
- Awadallah, F.A.; Al-Muhtaseb, S.A. Selective adsorption of carbon dioxide, methane and nitrogen using resorcinol-formaldehyde xerogel activated carbon. Adsorption 2017, 23, 933–944. [Google Scholar] [CrossRef]
- Shen, Y.; Bai, J. A new kind CO2/CH4 separation material: Open ended nitrogen doped carbon nanotubes formed by direct pyrolysis of metal organic frameworks. Chem. Commun. 2010, 46, 1308–1310. [Google Scholar] [CrossRef]
- Fonseca, A.; Reijerkerk, S.; Potreck, J.; Nijmeijer, K.; Mekhalif, Z.; Delhalle, J. Very short functionalized carbon nanotubes for membrane applications. Desalination 2010, 250, 1150–1154. [Google Scholar] [CrossRef]
- Saito, Y.; Dresselhause, G.; Dresselhause, M.S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, UK, 1998. [Google Scholar]
- Pérez-Caballero, F.; Anna-Liisa, P.; Koel, M. Preparation of nanostructured carbon materials. Proc. Est. Acad. Sci. 2008, 57, 48–53. [Google Scholar] [CrossRef]
- Wang, X.; Lu, L.-L.; Yu, Z.-L.; Xu, X.-W.; Zheng, Y.-R.; Yu, S.-H. Scalable template synthesis of resorcinol–formaldehyde/graphene gxide composite aerogels with tunable densities and mechanical propertie. Angew. Chem. Int. Ed. 2015, 54, 2397–2401. [Google Scholar] [CrossRef]
- ElKhatat, A.M.; Al-Muhtaseb, S.A. Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv. Mater. 2011, 23, 2887–2903. [Google Scholar] [CrossRef]
- Xu, C.; Ruan, C.-Q.; Li, Y.; Lindh, J.; Strømme, M. High-performance activated carbons synthesized from nanocellulose for CO2 capture and extremely selective removal of volatile organic compounds. Adv. Sustain. Syst. 2018, 2, 1700147. [Google Scholar] [CrossRef]
- Awadallah, F.A.; Al-Muhtaseb, S.A. Nanofeatures of resorcinol–formaldehyde carbon microspheres. Mater. Lett. 2012, 87, 31–34. [Google Scholar] [CrossRef]
- Langmuir, I. The Adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Ruthven, D.M. Principles of Adsorption and Adsorption Processes; John Wiley & Sons: Hoboken, NJ, USA, 1984; pp. 467–524. [Google Scholar]
- Myers, A.L. Activity coefficients of micture adsorbed on heterogenous surfaces. ALChE J. 1983, 29, 691–693. [Google Scholar] [CrossRef]
- Schell, J.; Casas, N.; Pini, R.; Mazzotti, M. Pure and binary adsorption of CO2, H2, and N2 on activated carbon. Adsorption 2012, 18, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Fang, S.; Tang, J.; Gao, L.; Yang, J. Synthesis and characterization of multiwalled carbon nanotube/polyurethane composites via surface modification multiwalled carbon nanotubes using silane coupling agent. Polym. Compos. 2012, 33, 1867–1873. [Google Scholar] [CrossRef]
- Fraczek-Szczypta, A.; Menaszek, E.; Syeda, T.B.; Misra, A.; Alavijeh, M.; Adu, J.; Blazewicz, S. Effect of MWCNT surface and chemical modification on in vitro cellular response. J. Nanopart. Res. 2012, 14, 1181. [Google Scholar] [CrossRef] [Green Version]
- Tsai, W.; Yang, J.; Lai, C.; Cheng, Y.H.; Lin, C.C.; Yeh, C.W. Characterization and adsorption properties of eggshells and eggshell membrane. Bioresour. Technol. 2006, 97, 488–493. [Google Scholar] [CrossRef]
- Everett, D.H.; IUPAC. Manual of symbol and terminology for physico -chemical quantities and units, appendix, definitions, terminology and symbols in colloid and surface chemistry, Part I. Pure Appl. Chem. 1972, 31, 579. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M.; Ryoo, R.; Joo, S.H. Characterization of MCM-48 silicas with tailored pore sizes synthesized via a highly efficient procedure. Chem. Mater. 2001, 13, 3169–3183. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Guan, Q.Z.; Dong, D.Z.; Wang, S.F.; Huang, J.; Wang, Y.; Hui, L.; Zhang, C. Preliminary study on shale gas microreservoir characteristics of the Lower Silurian Longmaxi Formation in the southern Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2016, 31, 382–395. [Google Scholar] [CrossRef]
- Groen, J.J.; Peffer, L.A.A. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Micropor. Mesopor. Mater. 2003, 60, 1–17. [Google Scholar] [CrossRef]
- Atchudan, R.; Pandurangan, A.; Jool, J. Effects of nanofillers on the thermo-mechanical properties and chemical resistivity of epoxy nanocomposites. J. Nanosci. Nanotechnol. 2015, 15, 4255–4267. [Google Scholar] [CrossRef] [PubMed]
- Heuchel, M.; Daviesm, G.M.; Buss, E.; Seaton, N.A. Adsorption of carbon dioxide and methane and their mixtures on an activated Carbon: simulation and experiment. Langmuir 1999, 15, 8695–8705. [Google Scholar] [CrossRef]
- Keren, O.; Twala, N.; Oluwasina, O.; Daramola, M.O. Synthesis and performance evaluation of chitosan/carbon nanotube (chitosan/MWCNT) composite adsorbent for post-combustion carbon dioxide capture. Energy Procedia 2017, 114, 2330–2335. [Google Scholar]
- Ngoy, J.; Wagner, N.; Riboldi, L.; Bolland, O. A CO2 capture technology using multi-walled carbon nanotubes. Energy Procedia 2014, 63, 2230–2248. [Google Scholar] [CrossRef] [Green Version]
- Su, F.; Lu, C.; Chen, H.-S. Adsorption, desorption, and thermodynamic studies of CO2 with high-amine-loaded multiwalled carbon nanotubes. Langmuir 2011, 27, 8090–8098. [Google Scholar] [CrossRef]
- Romero, J.R.G.; Moreno-Piraján, J.C.; Gutierrez, L.G. Kinetic and equilibrium study of the adsorption of CO2 in ultramicropores of resorcinol-formaldehyde aerogels obtained in acidic and basic medium. C—J. Carbon Res. 2018, 4, 52. [Google Scholar]
- Xia, Y.; Yang, Z.; Zhu, Y. Porous carbon-based materials for hydrogen storage: Advancement and challenges. J. Mater. Chem. A 2013, 1, 9365–9381. [Google Scholar] [CrossRef]
- Marco-Lozar, J.P.; Kunowsky, M.; Suárez-García, F.; Carruthersb, J.D.; Linares-Solano, A. Activated carbon monoliths for gas storage at room temperature. Energy Environ. Sci. 2012, 5, 9833–9842. [Google Scholar] [CrossRef]
- Gu, M.; Xian, X.; Duan, S.; Du, X. Influences of the composition and pore structure of a shale on its selective adsorption of CO2 over CH4. J. Nat. Gas. Sci. Eng. 2017, 46, 296–306. [Google Scholar] [CrossRef]
- Yang, H.; Gong, M.; Chen, Y. Preparation of activated carbons and their adsorption properties for greenhouse gases: CH4 and CO2. J. Nat. Gas Chem. 2011, 20, 460–464. [Google Scholar] [CrossRef]
- Moon, S.H.; Shim, J.W. A novel process for CO2/CH4 gas separation on activated carbon fibers—Electric swing adsorption. J. Colloid Interface Sci. 2006, 298, 523–528. [Google Scholar] [CrossRef]
- Bacsik, Z.; Cheung, O.; Vasiliev, P.; Hedin, N. Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56. Appl. Energy 2016, 162, 613–621. [Google Scholar] [CrossRef]
- Rattanaphan, S.; Rungrotmongkol, T.; Kongsune, P. Biogas improving by adsorption of CO2 on modified waste tea activated carbon. Renew. Energy 2010, 145, 622–631. [Google Scholar] [CrossRef]
- Wu, X.-X.; Zhang, C.-Y.; Tian, Z.-W.; Cai, J.-J. Large-surface-area carbons derived from lotus stem waste for efficient CO2 capture. New Carbon Mater. 2018, 33, 252–261. [Google Scholar] [CrossRef]
- Siqueira, R.F.; Freitasa, R.F.; Peixotoa, H.R.; Nascimento, D.J.F.; Musse, A.P.S.; Torres, A.E.B.; Azevedo, D.C.S.; Bastos-Neto, M. Carbon dioxide capture by pressure swing adsorption. Energy Procedia 2017, 114, 2182–2192. [Google Scholar] [CrossRef]
- Buss, E. Gravimetric measurement of binary gas adsorption equilibria of methane-carbon dioxide mixtures on activated carbon. Gas Sep. Purif. 1995, 9, 189–197. [Google Scholar] [CrossRef]
- Rezvani, H.; Fatemi, S.; Tamnanloo, J. Activated carbon surface modification by catalytic chemical vapor deposition of natural gas for enhancing adsorption of greenhouse gases. J. Environ. Chem. Eng. 2019, 7, 103085. [Google Scholar] [CrossRef]
- Koonaphapdeelert, S.; Moran, J.; Aggarangsi, P.; Asira, B. Low pressure biomethane gas adsorption by activated carbon. Energy Sustain. Dev. 2018, 43, 196–202. [Google Scholar] [CrossRef]
- Awadallah, F.A.; Al-Muhtaseb, S.A. Effect of gas templating of resorcinol-formaldehyde xerogels on characteristics and performances of subsequent activated carbons. Mater. Chem. Phys. 2019, 34, 361–368. [Google Scholar] [CrossRef]
- Wang, X.; French, J.; Kandadai, S.; Chua, H.T. Adsorption measurements of methane on activated carbon in the temperature range (281 to 343) K and pressures to 1.2 MPa. J. Chem. Eng. Data 2010, 55, 2700–2706. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, L. Molecular insight into competitive adsorption of methane and carbon dioxide in montmorillonite: Effect of clay structure and water content. Fuel 2019, 239, 32–43. [Google Scholar] [CrossRef]
Sample ID | Density a (g/cm3) | Pore Volume b (cm3/g) | BET Surface Area b (m2/g) | Average Pore Size b (nm) |
---|---|---|---|---|
S100 | 0.355 | 0.026 | 1.63 | 63.7 |
S50 | 0.373 | 0.525 | 158 | 14.2 |
S40 | 0.380 | 0.551 | 296 | 7.4 |
S0 | 0.394 | 0.767 | 507 | 6.1 |
Sample | Gas | Adsorption Capacity (mole/kg) | Reference |
---|---|---|---|
AC-RFA | CO2 | ~2.79 | This study |
CH4 | ~2 | This study | |
Shale | CO2 | 0.172 | [53] |
CH4 | 0.136 | ||
AC-coconut-shells | CO2 | 2.55 | [54] |
AC- fibers | CO2 | 0.7 | [55] |
CH4 | 0.3 | ||
AC-Wood pellets | CO2 | 2.32 | [56] |
AC-Waste tea | CO2 | 1.98 | [57] |
AC-Modified Waste | CO2 | 2.47 | |
AC-lotus stems | CO2 | 3.85 | [58] |
AC-commercial | CO2 | 6.123 | [59] |
AC- hard coal | CH4 | 7.43 | [60] |
AC-CCVD | CH4 | 4.01 | [61] |
CO2 | 6.41 | ||
AC-indigenous shells | CH4 | 0.48 | [62] |
AC-xerogels | CO2 | 1.5–3 | [63] |
CH4 | 4.5–5 | ||
AC-Maxsorb II | CH4 | 0.25–8.1875 | [64] |
AC-Clay-rich shale | CH4 | 3.85 | [65] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awadallah-F, A.; Al-Muhtaseb, S.A. Influence of Carbon Uniformity on Its Characteristics and Adsorption Capacities of CO2 and CH4 Gases. Appl. Sci. 2021, 11, 265. https://doi.org/10.3390/app11010265
Awadallah-F A, Al-Muhtaseb SA. Influence of Carbon Uniformity on Its Characteristics and Adsorption Capacities of CO2 and CH4 Gases. Applied Sciences. 2021; 11(1):265. https://doi.org/10.3390/app11010265
Chicago/Turabian StyleAwadallah-F, Ahmed, and Shaheen A. Al-Muhtaseb. 2021. "Influence of Carbon Uniformity on Its Characteristics and Adsorption Capacities of CO2 and CH4 Gases" Applied Sciences 11, no. 1: 265. https://doi.org/10.3390/app11010265
APA StyleAwadallah-F, A., & Al-Muhtaseb, S. A. (2021). Influence of Carbon Uniformity on Its Characteristics and Adsorption Capacities of CO2 and CH4 Gases. Applied Sciences, 11(1), 265. https://doi.org/10.3390/app11010265