Influence of Carbon Uniformity on Its Characteristics and Adsorption Capacities of CO2 and CH4 Gases
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Aerogels
2.3. Preparation of Carbonized and Activated Carbon Aerogels
2.4. Mixing of MWCNTs and AC-RFAs
2.5. Characterizations
3. Theory
3.1. Equilibrium Adsorption Isotherms
3.2. Selectivity
4. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Littlefield, J.A.; Marriott, J.; Schivley, G.A.; Skone, T.J. Synthesis of recent ground-level methane emission measurements from the U.S. natural gas supply chain. J. Clean. Prod. 2018, 148, 118–126. [Google Scholar] [CrossRef]
- Olajossy, A. Some parameters of coal methane system that cause very slow release of methane from virgin coal beds (CBM). Int. J. Min. Sci. Technol. 2017, 27, 321–326. [Google Scholar] [CrossRef]
- Rahman, K.A.; Ramesh, A. Effect of reducing the methane concentration on the combustion and performance of a biogas diesel predominantly premixed charge compression ignition engine. Fuel 2017, 206, 117–132. [Google Scholar] [CrossRef]
- Ahoughalandari, B.; Cabral, A.R. Landfill gas distribution at the base of passive methane oxidation biosystems: Transient state analysis of several configurations. Waste Manag. 2017, 69, 298–314. [Google Scholar] [CrossRef] [PubMed]
- Rios, R.B.; Stragliotto, F.M.; Peixoto, H.R.; Torres, A.E.B.; Bastos-Neto, M.; Azevedo, D.C.S.; Cavalcante, C.L., Jr. Studies on the adsorption behavior of CO2-CH4 mixtures using activated carbon. Braz. J. Chem. Eng. 2013, 30, 939–951. [Google Scholar] [CrossRef]
- Cavenati, S.; Grande, C.A.; Alírio, E.R. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data 2004, 49, 1095–1101. [Google Scholar] [CrossRef]
- Gholipour, M.M.F.G. Gas adsorption separation of CO2/CH4 system using zeolite 5A. Microporous Mesoporous Mater. 2014, 200, 1–10. [Google Scholar]
- Gholipour, F.; Mofarahi, M. Adsorption equilibrium of methane and carbon dioxide on zeolite 13X: Experimental and thermodynamic modeling. J. Supercrit. Fluids 2016, 111, 47–54. [Google Scholar] [CrossRef]
- Xu, X.; Song, C.; Miller, B.G.; Scaroni, A.W. Adsorption separation of carbon dioxide from flds gas of natural gas- fired boiler by a novel nanoporous “molecular basket” adsorbent. Fuel Process Technol. 2005, 86, 1457–1472. [Google Scholar] [CrossRef]
- Iarikov, D.D.; Hacarlioglu, P.; Oyama, S.T. Supported room temperature ionic liquid membranes for CO2/CH4 separation. Chem. Eng. J. 2011, 166, 401–406. [Google Scholar] [CrossRef]
- Ghoufi, A.; Gaberova, L.; Rouquerol, J.; Vincent, D.; Llewllyn, P.; Maurin, G. Adsorption of CO2, CH4 and their binary mixture in faujasite NaY: A combination of molecular simulations with gravimetry–manometry and microcalorimetry measurements. Microporous Mesoporous Mater. 2009, 119, 117–128. [Google Scholar] [CrossRef]
- Nazari, L.; Sarathy, S.; Santoro, D.; Ho, D.; Ray, M.B.; Xu, C.C. Direct Thermochemical Liquefaction for Energy Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 67–100. [Google Scholar]
- Bae, Y.; Mulfort, K.L.; Frost, H.; Ryan, P.; Punnathanam, S.; Broadbelt, L.J.; Hupp, J.T.; Snurr, R.Q. Separation of CO2 from CH4 using mixed-Ligand metal-organic frameworks. Langmuir 2008, 24, 8592–8598. [Google Scholar] [CrossRef]
- Zhang, X.-Q.; Li, W.-C.; Lu, A.-H. Designed porous carbon materials for efficient CO2 adsorption and separation. New Carbon Mater. 2015, 30, 481–501. [Google Scholar] [CrossRef]
- Wiśniewski, M.; Koter, S.; Terzyk, A.P.; Włoch, J.; Kowalczyk, P. CO2—Reinforced nanoporous carbon potential energy field during CO2/CH4 mixture adsorption. A comprehensive volumetric, in-situ IR, and thermodynamic insight. Carbon 2017, 122, 185–193. [Google Scholar] [CrossRef]
- Jusoh, N.; Yeong, Y.F.; Lau, K.K.; Azmi, M.S. Fabrication of silanated zeolite T/6FDA-durene composite membranes for CO2/CH4 separation. J. Clean Prod. 2017, 166, 1043–1058. [Google Scholar] [CrossRef]
- Venna, S.R.; Carreon, M.A. Metal organic framework membranes for carbon dioxide separation. Chem. Eng. Sci. 2015, 124, 3–19. [Google Scholar] [CrossRef]
- Kayal, S.; Chakraborty, A. Activated carbon (type Maxsorb-III) and MIL-101(Cr) metal organic framework based composite adsorbent for higher CH4 storage and CO2 capture. Chem. Eng. J. 2018, 334, 780–788. [Google Scholar] [CrossRef]
- Bello, G.; García, R.; Arriagada, R.; Sepúlveda-Escribano, A.; Rodriguez-Reinoso, F. Carbon molecular sieves from Eucalyptus globulus charcoal. Microporous Mesoporous Mater. 2002, 56, 139–145. [Google Scholar] [CrossRef]
- Arriagada, R.; Bello, G.; García, R.; Rodriguez-Reinoso, F. Carbon molecular sieves from hardwood carbon pellets. The influence of carbonization temperature in gas separation properties. Microporous Mesoporous Mater. 2005, 81, 161–167. [Google Scholar] [CrossRef]
- Lutyński, M.; Waszczuk, P.; Słomski, P.; Szczepańsk, J. CO2 sorption of Pomeranian gas bearing shales—The effect of clay minerals. Energy Procedia 2017, 125, 457–466. [Google Scholar] [CrossRef]
- Awadallah, F.A.; Al-Muhtaseb, S.A. Carbon dioxide sequestration and methane removal from exhaust gases using resorcinol–formaldehyde activated carbon xerogel. Adsorption 2013, 19, 967–977. [Google Scholar] [CrossRef]
- Yu, H.; Zhou, L.; Cheng, J.; Hu, Q. Predictions of the adsorption equilibrium of methane/carbon dioxide binary gas on coals using Langmuir and Ideal Adsorbed Solution. Int. J. Coal Geol. 2008, 73, 115–129. [Google Scholar] [CrossRef]
- Awadallah, F.A.; Al-Muhtaseb, S.A. Selective adsorption of carbon dioxide, methane and nitrogen using resorcinol-formaldehyde xerogel activated carbon. Adsorption 2017, 23, 933–944. [Google Scholar] [CrossRef]
- Shen, Y.; Bai, J. A new kind CO2/CH4 separation material: Open ended nitrogen doped carbon nanotubes formed by direct pyrolysis of metal organic frameworks. Chem. Commun. 2010, 46, 1308–1310. [Google Scholar] [CrossRef]
- Fonseca, A.; Reijerkerk, S.; Potreck, J.; Nijmeijer, K.; Mekhalif, Z.; Delhalle, J. Very short functionalized carbon nanotubes for membrane applications. Desalination 2010, 250, 1150–1154. [Google Scholar] [CrossRef]
- Saito, Y.; Dresselhause, G.; Dresselhause, M.S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, UK, 1998. [Google Scholar]
- Pérez-Caballero, F.; Anna-Liisa, P.; Koel, M. Preparation of nanostructured carbon materials. Proc. Est. Acad. Sci. 2008, 57, 48–53. [Google Scholar] [CrossRef]
- Wang, X.; Lu, L.-L.; Yu, Z.-L.; Xu, X.-W.; Zheng, Y.-R.; Yu, S.-H. Scalable template synthesis of resorcinol–formaldehyde/graphene gxide composite aerogels with tunable densities and mechanical propertie. Angew. Chem. Int. Ed. 2015, 54, 2397–2401. [Google Scholar] [CrossRef]
- ElKhatat, A.M.; Al-Muhtaseb, S.A. Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv. Mater. 2011, 23, 2887–2903. [Google Scholar] [CrossRef]
- Xu, C.; Ruan, C.-Q.; Li, Y.; Lindh, J.; Strømme, M. High-performance activated carbons synthesized from nanocellulose for CO2 capture and extremely selective removal of volatile organic compounds. Adv. Sustain. Syst. 2018, 2, 1700147. [Google Scholar] [CrossRef]
- Awadallah, F.A.; Al-Muhtaseb, S.A. Nanofeatures of resorcinol–formaldehyde carbon microspheres. Mater. Lett. 2012, 87, 31–34. [Google Scholar] [CrossRef]
- Langmuir, I. The Adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Ruthven, D.M. Principles of Adsorption and Adsorption Processes; John Wiley & Sons: Hoboken, NJ, USA, 1984; pp. 467–524. [Google Scholar]
- Myers, A.L. Activity coefficients of micture adsorbed on heterogenous surfaces. ALChE J. 1983, 29, 691–693. [Google Scholar] [CrossRef]
- Schell, J.; Casas, N.; Pini, R.; Mazzotti, M. Pure and binary adsorption of CO2, H2, and N2 on activated carbon. Adsorption 2012, 18, 49–65. [Google Scholar] [CrossRef]
- Zhou, L.; Fang, S.; Tang, J.; Gao, L.; Yang, J. Synthesis and characterization of multiwalled carbon nanotube/polyurethane composites via surface modification multiwalled carbon nanotubes using silane coupling agent. Polym. Compos. 2012, 33, 1867–1873. [Google Scholar] [CrossRef]
- Fraczek-Szczypta, A.; Menaszek, E.; Syeda, T.B.; Misra, A.; Alavijeh, M.; Adu, J.; Blazewicz, S. Effect of MWCNT surface and chemical modification on in vitro cellular response. J. Nanopart. Res. 2012, 14, 1181. [Google Scholar] [CrossRef]
- Tsai, W.; Yang, J.; Lai, C.; Cheng, Y.H.; Lin, C.C.; Yeh, C.W. Characterization and adsorption properties of eggshells and eggshell membrane. Bioresour. Technol. 2006, 97, 488–493. [Google Scholar] [CrossRef]
- Everett, D.H.; IUPAC. Manual of symbol and terminology for physico -chemical quantities and units, appendix, definitions, terminology and symbols in colloid and surface chemistry, Part I. Pure Appl. Chem. 1972, 31, 579. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M.; Ryoo, R.; Joo, S.H. Characterization of MCM-48 silicas with tailored pore sizes synthesized via a highly efficient procedure. Chem. Mater. 2001, 13, 3169–3183. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Guan, Q.Z.; Dong, D.Z.; Wang, S.F.; Huang, J.; Wang, Y.; Hui, L.; Zhang, C. Preliminary study on shale gas microreservoir characteristics of the Lower Silurian Longmaxi Formation in the southern Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2016, 31, 382–395. [Google Scholar] [CrossRef]
- Groen, J.J.; Peffer, L.A.A. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Micropor. Mesopor. Mater. 2003, 60, 1–17. [Google Scholar] [CrossRef]
- Atchudan, R.; Pandurangan, A.; Jool, J. Effects of nanofillers on the thermo-mechanical properties and chemical resistivity of epoxy nanocomposites. J. Nanosci. Nanotechnol. 2015, 15, 4255–4267. [Google Scholar] [CrossRef] [PubMed]
- Heuchel, M.; Daviesm, G.M.; Buss, E.; Seaton, N.A. Adsorption of carbon dioxide and methane and their mixtures on an activated Carbon: simulation and experiment. Langmuir 1999, 15, 8695–8705. [Google Scholar] [CrossRef]
- Keren, O.; Twala, N.; Oluwasina, O.; Daramola, M.O. Synthesis and performance evaluation of chitosan/carbon nanotube (chitosan/MWCNT) composite adsorbent for post-combustion carbon dioxide capture. Energy Procedia 2017, 114, 2330–2335. [Google Scholar]
- Ngoy, J.; Wagner, N.; Riboldi, L.; Bolland, O. A CO2 capture technology using multi-walled carbon nanotubes. Energy Procedia 2014, 63, 2230–2248. [Google Scholar] [CrossRef]
- Su, F.; Lu, C.; Chen, H.-S. Adsorption, desorption, and thermodynamic studies of CO2 with high-amine-loaded multiwalled carbon nanotubes. Langmuir 2011, 27, 8090–8098. [Google Scholar] [CrossRef]
- Romero, J.R.G.; Moreno-Piraján, J.C.; Gutierrez, L.G. Kinetic and equilibrium study of the adsorption of CO2 in ultramicropores of resorcinol-formaldehyde aerogels obtained in acidic and basic medium. C—J. Carbon Res. 2018, 4, 52. [Google Scholar]
- Xia, Y.; Yang, Z.; Zhu, Y. Porous carbon-based materials for hydrogen storage: Advancement and challenges. J. Mater. Chem. A 2013, 1, 9365–9381. [Google Scholar] [CrossRef]
- Marco-Lozar, J.P.; Kunowsky, M.; Suárez-García, F.; Carruthersb, J.D.; Linares-Solano, A. Activated carbon monoliths for gas storage at room temperature. Energy Environ. Sci. 2012, 5, 9833–9842. [Google Scholar] [CrossRef]
- Gu, M.; Xian, X.; Duan, S.; Du, X. Influences of the composition and pore structure of a shale on its selective adsorption of CO2 over CH4. J. Nat. Gas. Sci. Eng. 2017, 46, 296–306. [Google Scholar] [CrossRef]
- Yang, H.; Gong, M.; Chen, Y. Preparation of activated carbons and their adsorption properties for greenhouse gases: CH4 and CO2. J. Nat. Gas Chem. 2011, 20, 460–464. [Google Scholar] [CrossRef]
- Moon, S.H.; Shim, J.W. A novel process for CO2/CH4 gas separation on activated carbon fibers—Electric swing adsorption. J. Colloid Interface Sci. 2006, 298, 523–528. [Google Scholar] [CrossRef]
- Bacsik, Z.; Cheung, O.; Vasiliev, P.; Hedin, N. Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56. Appl. Energy 2016, 162, 613–621. [Google Scholar] [CrossRef]
- Rattanaphan, S.; Rungrotmongkol, T.; Kongsune, P. Biogas improving by adsorption of CO2 on modified waste tea activated carbon. Renew. Energy 2010, 145, 622–631. [Google Scholar] [CrossRef]
- Wu, X.-X.; Zhang, C.-Y.; Tian, Z.-W.; Cai, J.-J. Large-surface-area carbons derived from lotus stem waste for efficient CO2 capture. New Carbon Mater. 2018, 33, 252–261. [Google Scholar] [CrossRef]
- Siqueira, R.F.; Freitasa, R.F.; Peixotoa, H.R.; Nascimento, D.J.F.; Musse, A.P.S.; Torres, A.E.B.; Azevedo, D.C.S.; Bastos-Neto, M. Carbon dioxide capture by pressure swing adsorption. Energy Procedia 2017, 114, 2182–2192. [Google Scholar] [CrossRef]
- Buss, E. Gravimetric measurement of binary gas adsorption equilibria of methane-carbon dioxide mixtures on activated carbon. Gas Sep. Purif. 1995, 9, 189–197. [Google Scholar] [CrossRef]
- Rezvani, H.; Fatemi, S.; Tamnanloo, J. Activated carbon surface modification by catalytic chemical vapor deposition of natural gas for enhancing adsorption of greenhouse gases. J. Environ. Chem. Eng. 2019, 7, 103085. [Google Scholar] [CrossRef]
- Koonaphapdeelert, S.; Moran, J.; Aggarangsi, P.; Asira, B. Low pressure biomethane gas adsorption by activated carbon. Energy Sustain. Dev. 2018, 43, 196–202. [Google Scholar] [CrossRef]
- Awadallah, F.A.; Al-Muhtaseb, S.A. Effect of gas templating of resorcinol-formaldehyde xerogels on characteristics and performances of subsequent activated carbons. Mater. Chem. Phys. 2019, 34, 361–368. [Google Scholar] [CrossRef]
- Wang, X.; French, J.; Kandadai, S.; Chua, H.T. Adsorption measurements of methane on activated carbon in the temperature range (281 to 343) K and pressures to 1.2 MPa. J. Chem. Eng. Data 2010, 55, 2700–2706. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, L. Molecular insight into competitive adsorption of methane and carbon dioxide in montmorillonite: Effect of clay structure and water content. Fuel 2019, 239, 32–43. [Google Scholar] [CrossRef]
Sample ID | Density a (g/cm3) | Pore Volume b (cm3/g) | BET Surface Area b (m2/g) | Average Pore Size b (nm) |
---|---|---|---|---|
S100 | 0.355 | 0.026 | 1.63 | 63.7 |
S50 | 0.373 | 0.525 | 158 | 14.2 |
S40 | 0.380 | 0.551 | 296 | 7.4 |
S0 | 0.394 | 0.767 | 507 | 6.1 |
Sample | Gas | Adsorption Capacity (mole/kg) | Reference |
---|---|---|---|
AC-RFA | CO2 | ~2.79 | This study |
CH4 | ~2 | This study | |
Shale | CO2 | 0.172 | [53] |
CH4 | 0.136 | ||
AC-coconut-shells | CO2 | 2.55 | [54] |
AC- fibers | CO2 | 0.7 | [55] |
CH4 | 0.3 | ||
AC-Wood pellets | CO2 | 2.32 | [56] |
AC-Waste tea | CO2 | 1.98 | [57] |
AC-Modified Waste | CO2 | 2.47 | |
AC-lotus stems | CO2 | 3.85 | [58] |
AC-commercial | CO2 | 6.123 | [59] |
AC- hard coal | CH4 | 7.43 | [60] |
AC-CCVD | CH4 | 4.01 | [61] |
CO2 | 6.41 | ||
AC-indigenous shells | CH4 | 0.48 | [62] |
AC-xerogels | CO2 | 1.5–3 | [63] |
CH4 | 4.5–5 | ||
AC-Maxsorb II | CH4 | 0.25–8.1875 | [64] |
AC-Clay-rich shale | CH4 | 3.85 | [65] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awadallah-F, A.; Al-Muhtaseb, S.A. Influence of Carbon Uniformity on Its Characteristics and Adsorption Capacities of CO2 and CH4 Gases. Appl. Sci. 2021, 11, 265. https://doi.org/10.3390/app11010265
Awadallah-F A, Al-Muhtaseb SA. Influence of Carbon Uniformity on Its Characteristics and Adsorption Capacities of CO2 and CH4 Gases. Applied Sciences. 2021; 11(1):265. https://doi.org/10.3390/app11010265
Chicago/Turabian StyleAwadallah-F, Ahmed, and Shaheen A. Al-Muhtaseb. 2021. "Influence of Carbon Uniformity on Its Characteristics and Adsorption Capacities of CO2 and CH4 Gases" Applied Sciences 11, no. 1: 265. https://doi.org/10.3390/app11010265
APA StyleAwadallah-F, A., & Al-Muhtaseb, S. A. (2021). Influence of Carbon Uniformity on Its Characteristics and Adsorption Capacities of CO2 and CH4 Gases. Applied Sciences, 11(1), 265. https://doi.org/10.3390/app11010265