High-Input Impedance Voltage-Mode Multifunction Filter
Abstract
:1. Introduction
2. Proposed Circuit
3. Non-Ideal and Sensitivity Consideration
4. Simulation and Measurement Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.F.; Chen, H.P.; Ku, Y.; Lee, C.L. Versatile voltage-mode biquadratic filter and quadrature oscillator using four OTAs and two grounded capacitors. Electronics 2020, 9, 1493. [Google Scholar] [CrossRef]
- Tran, H.D.; Wang, H.Y.; Lin, M.C.; Nguyen, Q.M. Synthesis of cascadable DDCC-based universal filter using NAM. Appl. Sci. 2015, 5, 320–343. [Google Scholar] [CrossRef]
- Herencsar, N.; Koton, J.; Hanak, P. Universal voltage conveyor and its novel dual-output fully-cascadable VM APF application. Appl. Sci. 2017, 7, 307. [Google Scholar] [CrossRef]
- Maheshwari, S.; Chaturvedi, B. High-input low-output impedance all-pass filters using one active element. IET Circuits Devices Syst. 2012, 6, 103–110. [Google Scholar] [CrossRef]
- Lee, C.N. Independently tunable plus-type DDCC-based voltage-mode universal biquad filter with MISO and SIMO types. Microelectron. J. 2017, 67, 71–81. [Google Scholar] [CrossRef]
- Psychalinos, C.; Kasimis, C.; Khateb, F. Multiple-input single-output universal biquad filter using single output operational transconductance amplifiers. AEU Int. J. Electron. Commun. 2018, 93, 360–367. [Google Scholar] [CrossRef]
- Zhang, C.; Shang, L.; Wang, Y.; Tang, L. A CMOS programmable fourth-order butterworth active-RC low-pass filter. Electronics 2020, 9, 204. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.I.; Wu, D.S. New current-feedback amplifier-based universal biquadratic filter. IEEE Trans. Instrum. Meas. 1995, 44, 915–917. [Google Scholar]
- Horng, J.W. New configuration for realizing universal voltage-mode filter using two current-feedback amplifiers. IEEE Trans. Instrum. Meas. 2000, 49, 1043–1045. [Google Scholar] [CrossRef]
- Tangsrirat, W.; Surakampontorn, W. Single-resistance-controlled quadrature oscillator and universal biquad filter using CFOAs. AEU Int. J. Electron. Commun. 2009, 63, 1080–1086. [Google Scholar] [CrossRef]
- Shah, N.A.; Iqbal, S.Z.; Rather, M.F. Versatile voltage-mode CFA-based universal filter. AEU Int. J. Electron. Commun. 2005, 59, 192–194. [Google Scholar] [CrossRef]
- Shan, N.A.; Rather, M.F.; Iqbal, S.Z. CFA-based three input and two outputs voltage-mode universal filer. Indian J. Pure Appl. Phy. 2005, 43, 636–639. [Google Scholar]
- Singh, V.K.; Singh, A.K.; Bhaskar, D.R.; Senani, R. New universal biquads employing CFOAs. IEEE Trans. Circuits Syst. II Express Briefs 2006, 53, 1299–1303. [Google Scholar] [CrossRef]
- Horng, J.W. Voltage-mode universal biquad with five inputs and two outputs using two current feedback amplifiers. Indian J. Eng. Mater. Sci. 2013, 20, 87–91. [Google Scholar]
- Chang, C.M.; Hwang, C.S.; Tu, S.H. Voltage-mode notch, lowpass and bandpass filter using current-feedback amplifiers. Electron. Lett. 1994, 30, 2022–2023. [Google Scholar] [CrossRef]
- Shah, N.A.; Malik, M.A. Multifunction filter using current feedback amplifiers. Frequenz 2005, 59, 264–267. [Google Scholar] [CrossRef]
- Nikoloudis, S.; Psychalinos, C. Multiple input single output universal biquad filter with current feedback operational amplifiers. Circuits Syst. Signal Process. 2010, 29, 1167–1180. [Google Scholar] [CrossRef]
- Topaloglu, S.; Sagbas, M.; Anday, F. Three-input single-output second-order filters using current-feedback amplifiers. AEU Int. J. Electron. Commun. 2012, 66, 683–686. [Google Scholar] [CrossRef]
- Singh, A.K.; Senani, R. CFOA-based state-variable biquad and its high-frequency compensation. IEICE Electron. Express 2005, 2, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Horng, J.W.; Lee, M.H. High input impedance voltage-mode lowpass, bandpass and highpass filter using current-feedback amplifiers. Electron. Lett. 1997, 33, 947–948. [Google Scholar] [CrossRef]
- Shan, N.A.; Malik, M.A. High input impedance voltage-mode lowpass, bandpass, highpass and notch filter using current feedback amplifiers. Indian J. Eng. Mater. Sci. 2005, 12, 278–280. [Google Scholar]
- Shan, N.A.; Malik, M.A. New high input impedance voltage-mode lowpass, bandpass and highpass filter using current feedback amplifiers. J. Circuits Sys. Comp. 2005, 14, 1037–1043. [Google Scholar]
- Wang, S.F.; Chen, H.P.; Ku, Y.; Chen, P.Y. A CFOA-based voltage-mode multifunction biquadratic filter and a quadrature oscillator using the CFOA-based biquadratic filter. Appl. Sci. 2019, 9, 2304. [Google Scholar] [CrossRef] [Green Version]
- AD844: 60 MHz, 2000 V/μs, Monolithic op amp with Quad Low Noise Data Sheet (Rev. G). May 2017. Available online: www.linear.com (accessed on 1 December 2020).
Reference | Number CFAs Used | Number of R/C Used | Realize Three Kinds Filter Responses Simultaneously | All-Ground Capacitor | No Capacitor Connected in Series to X Terminal of CFA | Orthogonal ωo & Q Tuning | No Need Matching Condition | High-Input Impedance | Central Frequency (HZ) | 1-dB Compression. Point (dBm) | 3-Order Intercept Point (dBm) |
---|---|---|---|---|---|---|---|---|---|---|---|
[8] | 2 | 4/2 | no | no | yes | yes | yes | no | 8.84 k | none | none |
[9] | 2 | 2/2 | no | no | yes | no | yes | no | 15.9 k | none | none |
[10] | 2 | 2/2 | no | no | yes | no | yes | no | 15.9 k | none | none |
[11] | 3 | 3/2 | yes | no | yes | yes | yes | no | 15.9 k | none | none |
[12] | 2 | 3/2 | no | no | yes | yes | yes | no | 159.2 k | none | none |
[13] | 4 | 8/2 | yes | yes | yes | no | yes | yes | 5.6 k | none | none |
[14] | 2 | 4/2 | no | no | yes | no | no | no | 57 k | none | none |
[15] | 3 | 3/2 | yes | yes | yes | yes | yes | no | 15.9 k | none | none |
[16] | 3 | 3/2 | no | no | yes | no | no | yes | 9.95 k | none | none |
[17] | 4 | 5/2 | no | yes | yes | yes | no | yes | 99.5 k | none | none |
[18] | 3 | 5/2 | no | yes | yes | yes | no | yes | 79.5 k | none | none |
[19] | 4 | 6/2 | yes | yes | yes | yes | yes | yes | 15.9 k | none | none |
[20] | 3 | 4/3 | yes | yes | no | yes | yes | yes | 3.2 k | none | none |
[21] | 4 | 4/2 | yes | yes | yes | yes | yes | yes | 7.96 k | none | none |
[22] | 3 | 4/2 | yes | yes | no | no | yes | yes | 5.68 k | none | none |
[23] | 3 | 3/2 | yes | yes | yes | yes | yes | yes | 39.79 k | 11.8 | 21.59 |
Proposed | 3 | 3/2 | yes | yes | yes | yes | yes | yes | 39.79 k | 18.8 | 29.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.-F.; Chen, H.-P.; Ku, Y.; Li, Y.-F. High-Input Impedance Voltage-Mode Multifunction Filter. Appl. Sci. 2021, 11, 387. https://doi.org/10.3390/app11010387
Wang S-F, Chen H-P, Ku Y, Li Y-F. High-Input Impedance Voltage-Mode Multifunction Filter. Applied Sciences. 2021; 11(1):387. https://doi.org/10.3390/app11010387
Chicago/Turabian StyleWang, San-Fu, Hua-Pin Chen, Yitsen Ku, and Yi-Fang Li. 2021. "High-Input Impedance Voltage-Mode Multifunction Filter" Applied Sciences 11, no. 1: 387. https://doi.org/10.3390/app11010387
APA StyleWang, S. -F., Chen, H. -P., Ku, Y., & Li, Y. -F. (2021). High-Input Impedance Voltage-Mode Multifunction Filter. Applied Sciences, 11(1), 387. https://doi.org/10.3390/app11010387