Developing Data-Conscious Deep Learning Models for Product Classification
Abstract
:1. Introduction
2. Related Work
3. Proposed Methods
3.1. Model Architecture and Dataset Details
3.2. Models for Baseline
4. Experiment
4.1. Performance Results
4.2. Case Study of Filtering Efficiency
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Das, P.; Xia, Y.; Levine, A.; di Fabbrizio, G.; Datta, A. Large-scale taxonomy categorization for noisy product listings. In Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016; pp. 3885–3894. [Google Scholar]
- Skinner, M. Product categorization with LSTMs and balanced pooling views. In eCOM@ SIGIR; 2018; Available online: https://sigir-ecom.github.io/ecom2018/accepted-papers.html (accessed on 2 June 2021).
- Krishnan, A.; Amarthaluri, A. Large Scale Product Categorization using Structured and Unstructured Attributes. arXiv 2019, arXiv:1903.04254. [Google Scholar]
- Xia, Y.; Levine, A.; Das, P.; di Fabbrizio, G.; Shinzato, K.; Datta, A. Large-scale categorization of Japanese product titles using neural attention models. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, Spain, 3–7 April 2017; Volume 2, pp. 663–668. [Google Scholar]
- Kim, Y. Automatic Product Category Classification Using Deep Learning. Master’s Dissertation, Department of Computer Science, Sookmyung Women University, Seoul, Korea, 2021. [Google Scholar]
- Kim, Y. Convolutional Neural Networks for Sentence Classification. arXiv 2014, arXiv:1408.5882. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Yu, W.; Sun, Z.; Liu, H.; Li, Z.; Zheng, Z. Multi-level Deep Learning based E-commerce Product Categorization. In eCOM@ SIGIR; 2018; Available online: https://sigir-ecom.github.io/ecom2018/accepted-papers.html (accessed on 2 June 2021).
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Sak, H.; Senior, A.; Beaufays, F. Long Short-term memory recurrent neural network architecture for large scale acoustic modeling. Interspeech 2014, 2014, 338–342. [Google Scholar]
- Kil, H. The study of Korean stopwords list for text mining. Korean Lang. Lit. 2018, 78, 1–25. [Google Scholar]
- Lee, N.; Kim, J.; Shim, J. Empirical Study on Analyzing Training Data for CNN-based Product Classification Deep Learning Model. J. Soc. e-Bus. Stud. 2020, 26, 107–126. [Google Scholar] [CrossRef]
- Dalal, M.K.; Zaveri, M.A. Automatic Text Classification: A Technical Review. Int. J. Comput. Appl. 2011, 28, 37–40. [Google Scholar] [CrossRef]
- Cortez, E.; Herera, M.R.; da Silva, A.; de Moura, E.; Neubert, M. Lightweight Methods for Large-Scale Product Categorization. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1839–1848. [Google Scholar] [CrossRef]
- Shen, D.; Ruvini, J.-D.; Sarwar, B. Large-scale item categorization for e-commerce. In Proceedings of the 21st ACM International Conference on Information and Knowledge Management (CIKM’12), Maui, HI, USA, 29 October–2 November 2012; pp. 595–604. [Google Scholar]
- Aanen, S.; Vandic, D.; Frasincar, F. Automated product taxonomy mapping in an e-commerce environment. Expert Syst. Appl. 2015, 42, 1298–1313. [Google Scholar] [CrossRef]
- Lee, T.; Lee, I.-H.; Lee, S.; Lee, S.-G.; Kim, D.; Chun, J.; Lee, H.; Shim, J. Building an Operational Product Ontology System. Electron. Commer. Res. Appl. 2006, 5, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Ristoski, P.; Petrovski, P.; Mika, P.; Paulheim, H. A machine learning approach for product matching and categorization. Semant. Web 2018, 9, 707–728. [Google Scholar] [CrossRef] [Green Version]
- Ha, J.; Pyo, H.; Kim, J. Large-scale item categorization in e-commerce using multiple recurrent neural networks. In Proceedings of the 22nd ACM SIGKDD, International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 107–115. [Google Scholar]
- Zahavy, T.; Krishnan, A.; Magnani, A.; Mannor, D. Is a Picture Worth a Thousand Words? A Deep Multi-Modal Architecture for Product Classification in E-Commerce. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar]
- Kim, S.; Gil, J. Research paper classification systems based on TF-IDF and LDA schemes. Hum. Cent. Comput. Inf. Sci. 2019, 9, 1–21. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef] [Green Version]
Works | Models or Classifiers | Approach |
---|---|---|
Krishnan, A. et al. [3] | Multi-CNN, Multi-LSTM | Develop a new model |
Xia, Y. et al. [4] | CNN, GBT, ACNN | Develop a new model |
Das, P. et al. [1] | Naïve Bayes, CNN, GBT | Hyperparameter tuning |
Skinner, M. [2] | LSTM | Hyperparameter tuning |
Ha, J. et al. [20] | DeepCNN | Develop a new model |
Yu, W. et al. [8] | VDCNN, AbLSTM | Hyperparameter tuning |
Zahavy, T. et al. [21] | CNN, VGG | Develop a new model |
An Example of Data Transformation (for the Product Description Attribute) | |
---|---|
Before transformation | hand-made candle wt na~tu~ral soywax pre-mium fragrant oils💜 |
After transformation | handmade candle soy wax premium fragrance oil |
Selection | Transformation | Filtering | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Worst | Best | Avg. | Worst | Best | Avg. | Worst | Best | Avg. | ||
NB | accuracy | 0.2843 | 0.6311 | 0.4634 | 0.3358 | 0.6460 | 0.5218 | 0.3371 | 0.6460 | 0.5228 |
CNN | accuracy | 0.4867 | 0.7425 | 0.6574 | 0.5892 | 0.7869 | 0.7314 | 0.5854 | 0.7832 | 0.7345 |
time | 0:36:23 | 0:18:17 | - | 0:10:46 | 0:08:57 | - | 0:08:08 | 0:07:09 | - | |
Bi- LSTM | accuracy | 0.4886 | 0.7266 | 0.6457 | 0.5624 | 0.7784 | 0.7191 | 0.5645 | 0.7839 | 0.7232 |
time | 0:36:16 | 0:15:30 | - | 0:10:45 | 0:16:02 | - | 0:07:47 | 0:13:05 | - |
Stopword Selection Criteria for Filtering | Examples | Number and Proportion (%) of Removed Stopwords |
---|---|---|
(1) One-character words | Teuk (special), 1, L | 250 (19.3) |
(2) Words composed of only English characters | kakao, phone | 72 (5.6) |
(3) Words composed of only number | 10,000, 1, 2, 3 | 117 (9.0) |
(4) Words composed of (numbers + unit) | 100 cm, 10,000 won, 3 days | 31 (2.4) |
(5) Words indicating a specific brand | Nike, Starbucks, Gucci | 54 (4.2) |
(6) Words implying payment, delivery, etc. | Free delivery, shipping, cash, cash on delivery (COD) | 104 (8.0) |
Criterion Number (Refer to Table 4) | Naïve Bayes | CNN | Bi-LSTM |
---|---|---|---|
(1) One-character words | 0.6455 | 0.7754 | 0.7750 |
(2) Words composed of only English characters | 0.6455 | 0.7735 | 0.7825 |
(3) Words composed of only number | 0.6420 | 0.7744 | 0.7770 |
(4) Words composed of (numbers + unit) | 0.6460 | 0.7832 | 0.7839 |
(5) Words indicating a specific brand | 0.6496 | 0.7829 | 0.7689 |
(6) Words implying payment, delivery, etc. | 0.6462 | 0.7825 | 0.7651 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Lee, H.J.; Shim, J. Developing Data-Conscious Deep Learning Models for Product Classification. Appl. Sci. 2021, 11, 5694. https://doi.org/10.3390/app11125694
Kim Y, Lee HJ, Shim J. Developing Data-Conscious Deep Learning Models for Product Classification. Applied Sciences. 2021; 11(12):5694. https://doi.org/10.3390/app11125694
Chicago/Turabian StyleKim, Yijin, Hong Joo Lee, and Junho Shim. 2021. "Developing Data-Conscious Deep Learning Models for Product Classification" Applied Sciences 11, no. 12: 5694. https://doi.org/10.3390/app11125694
APA StyleKim, Y., Lee, H. J., & Shim, J. (2021). Developing Data-Conscious Deep Learning Models for Product Classification. Applied Sciences, 11(12), 5694. https://doi.org/10.3390/app11125694