Vermicomposting: A Valorization Alternative for Corn Cob Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pre-Composting
2.1.1. Substrate and Load Material
2.1.2. Process
2.2. Vermicomposting
2.2.1. Substrate
2.2.2. Process
2.3. Physicochemical Parameters
2.4. Statistical Analysis
3. Results and Discussion
3.1. Pre-Composting
3.1.1. Temperature
3.1.2. pH
3.1.3. Humidity
3.1.4. Organic Matter
3.1.5. Total Organic Carbon
3.2. Vermicomposting Process
3.2.1. Temperature
3.2.2. pH
3.2.3. Humidity
3.2.4. Organic Matter
3.2.5. Total Organic Carbon
3.2.6. Total Nitrogen
3.2.7. C/N Ratio
3.2.8. Vermicompost Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- PAM. Producción Mundial de Maíz 2020/2021 Producción Agrícola Mundial. 2020. Available online: http://www.produccionagricolamundial.com/cultivos/maiz.aspx (accessed on 4 February 2021).
- Serna, S.O. (Ed.) Corn: Chemistry and Technology; Woodhead Publishing: Cambridge, UK, 2019. [Google Scholar]
- Pérez, I.B.; García, P.J. Aportes de la biotecnología al mejoramiento del maíz. Rev. Peru. Innovación Agrar. 2021, 1, 130–150. [Google Scholar]
- Peñaranda, L.V.; Montenegro, S.P.; Giraldo, P.A. Aprovechamiento de residuos agroindustriales en Colombia. Rev. Investig. Agrar. Ambient. 2017, 8, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.L.; Tyner, W.E. Corn stover for bioenergy production: Cost estimates and farmer supply response. Biomass Bioenergy 2014, 62, 166–173. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Gong, X.; Sun, X.; Li, S.; Yu, X. Comparison of chemical and microbiological changes during the aerobic composting and vermicomposting of green waste. PLoS ONE 2018, 13, e0207494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, S.A.; Singh, J.; Vig, A.P. Effect on Growth of Earthworm and Chemical Parameters During Vermicomposting of Pressmud Sludge Mixed with Cattle Dung Mixture. Procedia Environ. Sci. 2016, 35, 425–434. [Google Scholar] [CrossRef]
- Pathma, J.; Sakthivel, N. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus 2012, 1, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, U.; Sajid, N.; Khalid, A.; Riaz, L.; Rabbani, M.M.; Syed, J.H.; Malik, R.N. A review on vermicomposting of organic wastes. Environ. Prog. Sustain. Energy 2015, 34, 1050–1062. [Google Scholar] [CrossRef]
- Greco, C.; Comparetti, A.L.; Febo, P.; La Placa, G.; Massimo, M.M.; Orlando, S. Sustainable valorisation of biowaste for soilles cultivation of salvia officinalis in a circular bioeconomy. Agronomy 2020, 10, 1158. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Q.; Zhang, Y.; Chen, J.; Zhang, D.; Tong, J. Changes in fibrolytic enzyme activity during vermicomposting of maize stover by an anecic earthworm Amynthas hupeiensis. Polym. Degrad. Stab. 2015, 120, 169–177. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Zhang, Q.; Xu, L.; Li, R.; Luo, X.; Zhang, X.; Tong, J. Earthworms modify microbial community structure and accelerate maize stover decomposition during vermicomposting. Environ. Sci. Pollut. Res. 2015, 22, 17161–17170. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, S. Composting of a crop residue through treatment with microorganisms and subsequent vermicomposting. Bioresour. Technol. 2002, 85, 107–111. [Google Scholar] [CrossRef]
- Suthar, S. Bioremediation of Agricultural Wastes through Vermicomposting. Bioremediation J. 2009, 13, 21–28. [Google Scholar] [CrossRef]
- Romero, J.C.; Sánchez, J.; Rodríguez, M.N.; Gutiérrez, M.C. Producción de vermicompost a base de rastrojo de maíz (Zea mays L.) y estiércol de bovino lechero. Agroproductividad 2015, 8, 52–59. [Google Scholar]
- Hussain, N.; Das, S.; Goswami, L.; Das, P.; Sahariah, B.; Bhattacharya, S.S. Intensification of vermitechnology for kitchen vegetable waste and paddy straw employing earthworm consortium: Assessment of maturity time, microbial community structure, and economic benefit. J. Clean. Prod. 2018, 182, 414–426. [Google Scholar] [CrossRef]
- Pandit, L.; Sethi, D.; Pattanayak, S.K.; Nayak, Y. Bioconversion of lignocellulosic organic wastes into nutrient rich vermicompost by Eudrilus eugeniae. Bioresour. Technol. Rep. 2020, 12, 100580. [Google Scholar] [CrossRef]
- Castro, A.R.; Cova, L.J.; García, D.E.; Medina, M.G. Efecto de la cáscara de huevo en la producción de cápsulas de la lombriz roja (Eisenia andrei). Zootec. Trop. 2017, 25, 135–142. [Google Scholar]
- Hincke, M.T.; Nys, Y.; Gautron, J. The role of matrix proteins in eggshell formation. J. Poult. Sci. Assoc. 2010, 47, 208–219. [Google Scholar] [CrossRef] [Green Version]
- Butcher, G.D.; Miles, R. Concepts of eggshell quality. University of Florida. Institute of Food and Agricultural Sciences (IFAS) Extension. 2018. Available online: https://edis.ifas.ufl.edu/vm013 (accessed on 16 April 2021).
- Malińska, K.; Zabochnicka-Świątek, M.; Cáceres, R.; Marfà, O. The effect of precomposted sewage sludge mixture amended with biochar on the growth and reproduction of Eisenia fetida during laboratory vermicomposting. Ecol. Eng. 2016, 90, 35–41. [Google Scholar] [CrossRef]
- Abdoli, M.A.; Omrani, G.; Safa, M.; Samavat, S. Comparison between aerated static piles and vermicomposting in producing co-compost from rural organic wastes and cow manure. Int. J. Environ. Sci. Technol. 2017, 16, 1551–1562. [Google Scholar] [CrossRef] [Green Version]
- Usmani, Z.; Kumar, V.; Rani, R.; Gupta, P.; Chandra, A. Changes in physico-chemical, microbiological and biochemical parameters during composting and vermicomposting of coal fly ash: A comparative study. Int. J. Environ. Sci. Technol. 2019, 16, 4647–4664. [Google Scholar] [CrossRef]
- Saba, S.; Zara, G.; Bianco, A.; Garau, M.; Bononi, M.; Deroma, M.; Pais, A.; Budroni, M. Comparative analysis of vermicompost quality produced from brewers’ spent grain and cow manure by the red earthworm Eisenia fetida. Bioresour. Technol. 2019, 293, 122019. [Google Scholar] [CrossRef]
- Castillo-González, E.; Giraldi-Díaz, M.R.; De Medina-Salas, L.; Sánchez-Castillo, M.P. Pre-Composting and Vermicomposting of Pineapple (Ananas Comosus) and Vegetable Waste. Appl. Sci. 2019, 9, 3564. [Google Scholar] [CrossRef] [Green Version]
- SEMARNAT. Mexican Official Norm NOM-021-RECNAT-2000 Especificaciones de Fertilidad, Salinidad y Clasificación de Suelos. Estudios, Muestreo y Análisis Secretaría de Medio Ambiente y Recursos Naturales Diario Oficial de la Federación: Mexico City, Mexico, 2002. Available online: http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69255.pdf (accessed on 4 February 2021).
- SCFI. Mexican Norm NMX-F-066-S-1978. Determinación de Cenizas en Alimentos Secretaría de Comercio y Fomento Industrial, Diario Oficial de la Federación: Mexico City, Mexico, 1978. Available online: https://www.colpos.mx/bancodenormas/nmexicanas/NMX-F-066-S-1978.PDF (accessed on 4 February 2021).
- SEDUE. Norma Mexicana NMX-AA-24-1984 Protección al Ambiente-Contaminación del Suelo-Residuos Sólidos Municipales-Determinación de Nitrógeno Total Secretaría de Desarrollo Urbano y Ecología, Diario Oficial de la Federación: Mexico City, Mexico. 1992. Available online: http://legismex.mty.itesm.mx/normas/aa/aa024.pdf (accessed on 4 February 2021).
- Mortier, N.; Velghe, F.; Verstichel, S. Organic Recycling of Agricultural Waste Today: Composting and Anaerobic Digestion. In Biotransformation of Agricultural Waste and By-Products; Poltroniero, P., D’Urso, O.F., Eds.; ScienceDirect: Amsterdam, The Netherlands, 2016; pp. 69–124. [Google Scholar]
- Sánchez, Ó.J.; Ospina, D.A.; Montoya, S. Compost supplementation with nutrients and microorganisms in composting process. Waste Manag. 2017, 69, 136–153. [Google Scholar] [CrossRef] [PubMed]
- Shilev, S.; Naydenov, M.; Vancheva, V.; Aladjadjiyan, A. Utilization of By-Products and Treatment of Waste in Food Industry; Composting of Food and Agricultural Wastes, Ed.; Springer: Cham, Switzerland, 2007; pp. 283–301. [Google Scholar]
- Li, Y.; Luo, W.; Lu, J.; Zhang, X.; Li, S.; Wu, Y.; Li, G. Effects of digestion time in anaerobic digestion on subsequent digestate composting. Bioresour. Technol. 2018, 267, 117–125. [Google Scholar] [CrossRef]
- Nair, J.; Sekiozoic, V.; Anda, M. Effect of pre-composting on vermicomposting of kitchen waste. Bioresour. Technol. 2006, 97, 2091–2095. [Google Scholar] [CrossRef] [PubMed]
- Bueno, M.P.; Díaz, B.M.J.; Cabrera, C.F. Factores que Afectan al Proceso de Compostaje. In Compostaje; Moreno, C.M., Moral, H.R., Eds.; Mundi-Prensa: Madrid, Spain, 2008; pp. 93–109. Available online: http://digital.csic.es/bitstream/10261/20837/3/Factores%20que%20afectan%20al%20proceso%20de%20compostaje.pdf (accessed on 4 February 2021).
- Petiot, C.; De Guardia, A. Composting in a Laboratory Reactor: A Review. Compos. Sci. Util. 2004, 12, 69–79. [Google Scholar] [CrossRef]
- Lashermes, G.; Barriuso, E.; Le Villio-Poitrenaud, M.; Houot, S. Composting in small laboratory pilots: Performance and reproducibility. Waste Manag. 2012, 32, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J. Manual de compostaje para Agricultura Ecologica; Consejería de Agricultura y Pesca Junta de Andalucía: Sevilla, Spain, 2010; p. 49. [Google Scholar]
- Toledo, M.; Gutiérrez, M.; Peña, A.; Siles, J.; Martín, M. Co-composting of chicken manure, alperujo, olive leaves/pruning and cereal straw at full-scale: Compost quality assessment and odour emission. Process. Saf. Environ. Prot. 2020, 139, 362–370. [Google Scholar] [CrossRef]
- Jaramillo, G.; Zapata, L.M. Aprovechamiento de los Residuos Sólidos Orgánicos en Colombia. Master’s Thesis, Universidad de Antioquía Facultad de Ingeniería, Antioquía, Colombia, 2008. [Google Scholar]
- Reyes-Torres, M.; Oviedo-Ocaña, E.R.; Dominguez, I.; Komilis, D.; Sánchez, A. A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Manag. 2018, 77, 486–499. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Wu, D.; Wei, D.; Zhao, Y.; Wu, J.; Xie, X.; Zhang, R.; Wei, Z. Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities. Bioresour. Technol. 2019, 271, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-L.; Chen, X.-M.; Sun, J.; Liu, J.-Y.; Sun, S.-Y.; Yang, Z.-Y.; Wang, Y. Spent mushroom substrate biochar as a potential amendment in pig manure and rice straw composting processes. Environ. Technol. 2016, 38, 1765–1769. [Google Scholar] [CrossRef]
- Piotrowska-Cyplik, A.; Chrzanowski, Ł.; Cyplik, P.; Dach, J.; Olejnik, A.; Staninska-Pięta, J.; Czarny, J.; Lewicki, A.; Marecik, R.; Powierska-Czarny, J. Composting of oiled bleaching earth: Fatty acids degradation, phytotoxicity and mutagenicity changes. Int. Biodeterior. Biodegrad. 2013, 78, 49–57. [Google Scholar] [CrossRef]
- Zhao, X.-L.; Li, B.-Q.; Ni, J.-P.; Xie, D.-T. Effect of four crop straws on transformation of organic matter during sewage sludge composting. J. Integr. Agric. 2016, 15, 232–240. [Google Scholar] [CrossRef]
- Vuorinen, A.H.; Saharinen, M.H. Evolution of microbiological and chemical parameters during manure and straw co-composting in a drum composting system. Agric. Ecosyst. Environ. 1997, 66, 19–29. [Google Scholar] [CrossRef]
- Bodin, D.D.; Thorup-Kristensen, K. Delayed nutrient application affects mineralisation rate during composting of plant residues. Bioresour. Technol. 2005, 96, 1093–1101. [Google Scholar]
- Abdelhamid, M.T.; Horiuchi, T.; Oba, S. Composting of rice straw with oilseed rape cake and poultry manure and its effects on faba bean (Vicia faba L.) growth and soil properties. Bioresour. Technol. 2004, 93, 183–189. [Google Scholar] [CrossRef]
- Jun-Zhu, P.A.N.G.; Yu-Hui, Q.I.A.O.; Zhen-Jun, S.U.N.; Zhang, S.X.; Yun-Le, L.I.; Zhang, R.Q. Effects of Epigeic Earthworms on Decomposition of Wheat Straw and Nutrient Cycling in Agricultural Soils in a Reclaimed Salinity Area: A Microcosm Study. Pedosphere 2012, 22, 726–735. [Google Scholar]
- Wever, L.A.; Lysyk, T.J.; Clapperton, M. The influence of soil moisture and temperature on the survival, aestivation, growth and development of juvenile Aporrectodea tuberculata (Eisen) (Lumbricidae). Pedobiologia 2001, 45, 121–133. [Google Scholar] [CrossRef]
- Kaur, T. Vermicomposting: An Effective Option for Recycling Organic Wastes. In Organic Agriculture; IntechOpen: Hampshire, UK, 2020; pp. 1–10. [Google Scholar]
- Yadav, A.; Garg, V. Feasibility of nutrient recovery from industrial sludge by vermicomposting technology. J. Hazard. Mater. 2009, 168, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Suthar, S. Vermicomposting of vegetable-market solid waste using Eisenia fetida: Impact of bulking material on earthworm growth and decomposition rate. Ecol. Eng. 2009, 35, 914–920. [Google Scholar] [CrossRef]
- Panjgotra, S.; Sangha, G.K.; Sharma, S.; Kondal, J.K. Effect of wheat straw and FYM on growth and reproduction of Eisenia fetida during vermicomposting. J. Appl. Nat. Sci. 2016, 8, 2212–2218. [Google Scholar] [CrossRef]
- Arora, M.; Kaur, A. Azolla pinnata, Aspergillus terreus and Eisenia fetida for enhancing agronomic value of paddy straw. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SCFI. Mexican Norm NMX-FF-109-SCFI-2007 Humus de Lombriz (lombricomposta)-Especificaciones y Métodos de Prueba, Secretaría de Comercio y Fomento Industrial, Diario Oficial de la Federación: Mexico City, Mexico. 2008. Available online: http://www.economia-nmx.gob.mx/normas/nmx/2007/nmx-ff-109-scfi-2008.pdf (accessed on 4 February 2021).
- Pirsaheb, M.; Sharafi, K.; Khosravi, T. Domestic scale vermicomposting for solid waste management. Int. J. Recycl. Org. Waste Agric. 2013, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Yadav, A.; Garg, V.K. Industrial wastes and sludges management by vermicomposting. Rev. Environ. Sci. Bio. Technol. 2011, 10, 243–276. [Google Scholar] [CrossRef]
- Pinedo, M.L.N.; Ferronato, N.; Ragazzi, M.; Torretta, V. Vermicomposting process for treating animal slurry in Latin American rural areas. Waste Manag. Res. 2019, 37, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Munroe, G. Manual of On-Farm Vermicomposting and Vermiculture; Organic Agriculture Centre of Canada: Nova Scotia, NS, Canada, 2007. [Google Scholar]
- Rodríguez, L.G.; Cardoso, L.; Maldonado, T.; Martínez, M. Pathogen reduction in septic tank sludge through vermicomposting using Eisenia fetida. Bioresour. Technol. 2010, 101, 3548–3553. [Google Scholar] [CrossRef] [PubMed]
- Pellejero, G.; Rodriguez, K.; Ashchkar, G.; Vela, E.; García-Delgado, C.; Jiménez-Ballesta, R. Onion waste recycling by vermicomposting: Nutrients recovery and agronomical assessment. Int. J. Environ. Sci. Technol. 2020, 17, 3289–3296. [Google Scholar] [CrossRef]
- Raza, S.T.; Zhu, B.; Tang, J.L.; Ali, Z.; Anjum, R.; Bah, H.; Iqbal, H.; Ren, X.; Ahmad, R. Nutrients Recovery during Vermicomposting of Cow Dung, Pig Manure, and Biochar for Agricultural Sustainability with Gases Emissions. Appl. Sci. 2020, 10, 8956. [Google Scholar] [CrossRef]
- González-Moreno, M.A.; García, G.B.; Sádaba, M.S.; Zaratiegui, U.J.; Robles, D.E.; Pérez, E.M.A.; Seco, M.A. Feasibility of Vermicomposting of Spent Coffee Grounds and Silverskin from Coffee Industries: A Laboratory Study. Agronomy 2020, 10, 1125. [Google Scholar] [CrossRef]
- Manna, M.C.; Singh, M.; Kundu, S.; Tripathi, A.K.; Takkar, P.N. Growth and reproduction of the vermicomposting earthworm Perionyx excavatus as influenced by food materials. Biol. Fertil. Soils 1997, 24, 129–132. [Google Scholar] [CrossRef]
- Gupta, R.; Garg, V.K. Vermitechnology for Organic Waste Recycling. In Current Developments in Biotechnology and Bioengineering; Wong, J.W.C., Tyagi, R.D., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 83–112. [Google Scholar]
- Manyuchi, M.M.; Mbohwa, C.; Muzenda, E. Valorization of Corn Sillage through Vermicomposting. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Washington, DC, USA, 27–29 September 2018; pp. 2056–2059. [Google Scholar]
- Kumar, R.; Verma, D.; Singh, B.L.; Kumar, U. Shweta Composting of sugar-cane waste by-products through treatment with microorganisms and subsequent vermicomposting. Bioresour. Technol. 2010, 101, 6707–6711. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Singh, P.; Araujo, A.S.; Ibrahim, M.H.; Sulaiman, O. Management of urban solid waste: Vermicomposting a sustainable option. Resour. Conserv. Recycl. 2011, 55, 719–729. [Google Scholar] [CrossRef]
- Florkowski, W.J.; Shewfelt, R.; Brueckner, B.; Prussia, S.E. Postharvest Handling: A Systems Approach; Elsevier Inc. Academic Press: Amsterdam, the Netherlands, 2009. [Google Scholar]
- Ovodova, R.G.; Golovchenko, V.V.; Popov, S.V.; Popova, G.Y.; Paderin, N.M.; Shashkov, A.S.; Ovodov, Y.S. Chemical composition and anti-inflammatory activity of pectic polysaccharide isolated from celery stalks. Food Chem. 2009, 114, 610–615. [Google Scholar] [CrossRef]
- Gokavi, S.S.; Malleshi, N.G.; Guo, M. Chemical Composition of Garden Cress (Lepidium sativum) Seeds and Its Fractions and use of Bran as a Functional Ingredient. Plant Foods Hum. Nutr. 2004, 59, 105–111. [Google Scholar] [CrossRef]
- Mzoughi, Z.; Chahdoura, H.; Chakroun, Y.; Cámara, M.; Fernández-Ruiz, V.; Morales, P.; Mosbah, H.; Flamini, G.; Snoussi, M.; Majdoub, H. Wild edible Swiss chard leaves (Beta vulgaris L. var. cicla): Nutritional, phytochemical composition and biological activities. Food Res. Int. 2019, 119, 612–621. [Google Scholar] [CrossRef]
- López-Cervantes, J.; Tirado-Noriega, L.G.; Sánchez-Machado, D.I.; Campas-Baypoli, O.N.; Cantú-Soto, E.U.; Núñez-Gastélum, J.A. Biochemical composition of broccoli seeds and sprouts at different stages of seedling development. Int. J. Food Sci. Technol. 2013, 48, 2267–2275. [Google Scholar] [CrossRef]
- Tang, L.; Hamid, Y.; Sahito, Z.A.; Gurajala, H.K.; He, Z.; Feng, Y.; Yang, X. Evaluation of variation in essential nutrients and hazardous materials in spinach (Spinacia oleracea L.) genotypes grown on contaminated soil for human consumption. J. Food Compos. Anal. 2019, 79, 95–106. [Google Scholar] [CrossRef]
- Manaig, E.M. Vermicomposting efficiency and quality of vermicomposting with different bedding materials and worm food sources as substrate. Res. J. Agric. For. Sci. 2016, 4, 1–13. [Google Scholar]
Reactor | Feedstock-Corn Cob Waste by Weight g (%) | Load Material | Number of Earthworms | |
---|---|---|---|---|
Vegetable Waste by Weight g (%) | Eggshell by Weight g (%) | |||
Control reactor (CR) | 1000 (50%) | 750 (37.5%) | 250 (12.5%) | 0 |
Mixture 1 (M1) | 1000 (50%) | 750 (37.5%) | 250 (12.5%) | 50 |
Mixture 2 (M2) | 1200 (60%) | 600 (30%) | 200 (20%) | 50 |
Mixture 3 (M3) | 800 (40%) | 900 (45%) | 300 (15%) | 50 |
Physicochemical Parameters | At the Beginning | At the End | ||||||
---|---|---|---|---|---|---|---|---|
CR | M1 | M2 | M3 | CR | M1 | M2 | M3 | |
Total Nitrogen (%) | 1.32 ± 0.02 a | 1.28 ± 0.04 a | 1.31 ± 0.02 a | 1.31 ± 0.06 a | 1.59 ± 0.04 a | 1.60 ± 0.06 a | 1.54 ± 0.04 a | 1.52 ± 0.04 a |
Total Organic Carbon (%) | 50.60 ± 1.72 a | 50.33 ± 0.91 a | 49.48 ± 1.68 a | 50.27 ± 0.75 a | 30.33 ± 0.76 a,b | 30.03 ± 0.78 a | 31.00 ± 1.18 a,b | 32.71 ± 0.98 b |
Organic matter (%) | 87.23 ± 2.97 a | 86.77 ± 2.34 a | 85.31 ± 3.30 a | 86.67 ± 2.77 a | 52.20 a,b | 51.70 a | 53.40 a,b | 56.40 b |
C/N Relation | 38.48 ± 1.08 | 39.36 ± 0.79 | 37.70 ± 1.58 | 38.23 ± 1.15 | 19.03 ± 0.51 | 18.84 ± 0.55 | 20.20 ± 1.01 | 21.49 ± 1.03 |
Humidity (%) | 75.50 ± 1.51 | 79.40 ± 2.54 | 70.36 ± 1.76 | 77.19 ± 1.70 | 58.46 ± 1.64 | 50.84 ± 1.58 | 66.43 ± 1.99 | 55.05 ± 1.10 |
pH | 7.51 ± 0.11 | 8.04 ± 0.13 | 7.03 ± 0.14 | 6.92 ± 0.15 | 6.90 ± 0.18 | 6.93 ± 0.12 | 7.00 ± 0.20 | 7.00 ± 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo-González, E.; De Medina-Salas, L.; Giraldi-Díaz, M.R.; Sánchez-Noguez, C. Vermicomposting: A Valorization Alternative for Corn Cob Waste. Appl. Sci. 2021, 11, 5692. https://doi.org/10.3390/app11125692
Castillo-González E, De Medina-Salas L, Giraldi-Díaz MR, Sánchez-Noguez C. Vermicomposting: A Valorization Alternative for Corn Cob Waste. Applied Sciences. 2021; 11(12):5692. https://doi.org/10.3390/app11125692
Chicago/Turabian StyleCastillo-González, Eduardo, Lorena De Medina-Salas, Mario Rafael Giraldi-Díaz, and Cipriano Sánchez-Noguez. 2021. "Vermicomposting: A Valorization Alternative for Corn Cob Waste" Applied Sciences 11, no. 12: 5692. https://doi.org/10.3390/app11125692
APA StyleCastillo-González, E., De Medina-Salas, L., Giraldi-Díaz, M. R., & Sánchez-Noguez, C. (2021). Vermicomposting: A Valorization Alternative for Corn Cob Waste. Applied Sciences, 11(12), 5692. https://doi.org/10.3390/app11125692