Evaluation of Deep Learning against Conventional Limit Equilibrium Methods for Slope Stability Analysis
Abstract
:Featured Application
Abstract
1. Introduction
2. Models
2.1. Overview of the Research Method
2.2. Convolutional Neural Networks (CNNs)
2.2.1. Multiclass Classification
2.2.2. Regression
3. Data
3.1. Geometry
3.2. Soil Properties
3.3. Validation of the Computer Code for Data Generation
3.4. Data Pretreatments
4. Limit Equilibrium Methods (LEMs)
4.1. Bishop’s Simplified Method (BSM)
4.2. Ordinary Method of Slices (OMS or Fellenius)
4.3. Janbu’s Simplified Method (JSM)
4.4. Janbu’s Corrected Method (JCM)
5. Results and Discussions
5.1. Training
5.2. Testing
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duncan, J.M.; Wright, S.G.; Brandon, T.L. Soil Strength and Slope Stability; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Cheng, Y.M.; Lau, C. Slope Stability Analysis and Stabilization: New Methods and Insight; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Zhu, D.; Lee, C.; Jiang, H. Generalised framework of limit equilibrium methods for slope stability analysis. Geotechnique 2003, 53, 377–395. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Humpheson, C.; Lewis, R.W. Associated and non-associated visco-plasticity and plasticity in soil mechanics. Géotechnique 1975, 25, 671–689. [Google Scholar] [CrossRef]
- Price, V.; Morgenstern, N. The analysis of the stability of general slip surfaces. Geotechnique 1965, 15, 79–93. [Google Scholar] [CrossRef]
- Chen, R.H.; Chameau, J.-L. Three-dimensional limit equilibrium analysis of slopes. Géotechnique 1983, 33, 31–40. [Google Scholar] [CrossRef]
- Duncan, J.M. State of the Art: Limit Equilibrium and Finite-Element Analysis of Slopes. J. Geotech. Eng. 1996, 122, 577–596. [Google Scholar] [CrossRef]
- Pourkhosravani, A.; Kalantari, B. A review of current methods for slope stability evaluation. Electron. J. Geotech. Eng. 2011, 16, 1245–1254. [Google Scholar]
- Feng, X.; Li, S.; Yuan, C.; Zeng, P.; Sun, Y. Prediction of Slope Stability using Naive Bayes Classifier. KSCE J. Civ. Eng. 2018, 22, 941–950. [Google Scholar] [CrossRef]
- Yu, H.S.; Salgado, R.; Sloan, S.; Kim, J.M. Limit Analysis versus Limit Equilibrium for Slope Stability. J. Geotech. Geoenviron. Eng. 1998, 124, 1–11. [Google Scholar] [CrossRef]
- Kim, J.; Salgado, R.; Lee, J. Stability Analysis of Complex Soil Slopes using Limit Analysis. J. Geotech. Geoenviron. Eng. 2002, 128, 546–557. [Google Scholar] [CrossRef]
- Soga, K.; Alonso, E.; Yerro, A.; Kumar, K.; Bandara, S. Trends in large-deformation analysis of landslide mass movements with particular emphasis on the ma-terial point method. Géotechnique 2016, 66, 248–273. [Google Scholar] [CrossRef] [Green Version]
- Troncone, A.; Pugliese, L.; Lamanna, G.; Conte, E. Prediction of rainfall-induced landslide movements in the presence of stabilizing piles. Eng. Geol. 2021, 288, 106143. [Google Scholar] [CrossRef]
- Sulsky, D.; Chen, Z.; Schreyer, H. A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 1994, 118, 179–196. [Google Scholar] [CrossRef]
- Alonso, E.E. Triggering and motion of landslides. Géotechnique 2020, 71, 1–57. [Google Scholar] [CrossRef]
- Fern, E.J.; de Lange, D.A.; Zwanenburg, C.; Teunissen, J.A.M.; Rohe, A.; Soga, K. Experimental and numerical investigations of dyke failures involving soft materials. Eng. Geol. 2017, 219, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Conte, E.; Pugliese, L.; Troncone, A. Post-failure analysis of the Maierato landslide using the material point method. Eng. Geol. 2020, 277, 105788. [Google Scholar] [CrossRef]
- Hsu, S.-C.; Nelson, P.P. Material Spatial Variability and Slope Stability for Weak Rock Masses. J. Geotech. Geoenviron. Eng. 2006, 132, 183–193. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458. [Google Scholar]
- Aggarwal, C.C. Neural Networks and Deep Learning; Springer International Publishing: New York, NY, USA, 2018. [Google Scholar]
- Abdeljaber, O.; Avci, O.; Kiranyaz, S.; Gabbouj, M.; Inman, D.J. Real-time vibra-tion-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 2017, 388, 154–170. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, F.; Zhang, Y.D.; Zhu, Y.J. Road crack detection using deep convolutional neural network. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3708–3712. [Google Scholar]
- Oullette, R.; Browne, M.; Hirasawa, K. Genetic algorithm optimization of a con-volutional neural network for autonomous crack detection. In Proceedings of the 2004 Congress on Evolutionary Computation, Portland, OR, USA, 19–23 June 2004; pp. 516–521. [Google Scholar]
- Zhang, A.; Wang, K.C.P.; Li, B.; Yang, E.; Dai, X.; Peng, Y.; Fei, Y.; Liu, Y.; Li, J.Q.; Chen, C. Automated Pixel-Level Pavement Crack Detection on 3D Asphalt Surfaces Using a Deep-Learning Network. Comput. Civ. Infrastruct. Eng. 2017, 32, 805–819. [Google Scholar] [CrossRef]
- Nhat-Duc, H.; Nguyen, Q.-L.; Tran, V.-D. Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network. Autom. Constr. 2018, 94, 203–213. [Google Scholar] [CrossRef]
- Bi, C.; Fu, B.; Chen, J.; Zhao, Y.; Yang, L.; Duan, Y.; Shi, Y. Machine learning based fast multi-layer liquefaction disaster assessment. World Wide Web 2018, 22, 1935–1950. [Google Scholar] [CrossRef]
- Li, H.; Xu, Q.; He, Y.; Fan, X.; Li, S. Modeling and predicting reservoir landslide displacement with deep belief network and EWMA control charts: A case study in Three Gorges Reservoir. Landslides 2019, 17, 693–707. [Google Scholar] [CrossRef]
- Li, H.; Xu, Q.; He, Y.; Deng, J. Prediction of landslide displacement with an en-semble-based extreme learning machine and copula models. Landslides 2018, 15, 2047–2059. [Google Scholar] [CrossRef]
- Huang, L.; Li, J.; Hao, H.; Li, X. Micro-seismic event detection and location in underground mines by using Convolutional Neural Networks (CNN) and deep learning. Tunn. Undergr. Space Technol. 2018, 81, 265–276. [Google Scholar] [CrossRef]
- Nuttall, J. Estimating spatial correlations from CPT data using neural networks and random fields. In Numerical Methods in Geotechnical Engineering: Proceedings of the 9th European Conference on Numerical Methods in Geotechnical Engineering, Porto, Portugal, 25–27 June 2018; Informa UK Limited: Porto, Portugal, 2018; pp. 713–717. [Google Scholar]
- Huang, F.; Zhang, J.; Zhou, C.; Wang, Y.; Huang, J.; Zhu, L. A deep learning al-gorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides 2020, 17, 217–229. [Google Scholar] [CrossRef]
- Hua, Y.; Wang, X.; Li, Y.; Xu, P.; Xia, W. Dynamic Development of Landslide Susceptibility Based on Slope Unit and Deep Neural Networks. Landslides 2020, 18, 1–22. [Google Scholar] [CrossRef]
- Azmoon, B.; Biniyaz, A.; Liu, Z. Image-Data Driven Slope Stability Analysis for Preventing Landslides Using Deep Learning. IEEE Access 2021. manuscript submitted for publication. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef] [Green Version]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Lui, H.W.; Chow, K.L. Multiclass classification of myocardial infarction with convolutional and recurrent neural networks for portable ECG devices. Inform. Med. Unlocked 2018, 13, 26–33. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. Deep learning for visual understanding: A review. Neurocomputing 2016, 187, 27–48. [Google Scholar] [CrossRef]
- Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 675–678. [Google Scholar]
- Cengil, E.; Cinar, A.; Ozbay, E. Image classification with caffe deep learning framework. In Proceedings of the 2017 International Conference on Computer Science and Engineering (UBMK), Antalya, Turkey, 5–8 October 2017; pp. 440–444. [Google Scholar]
- Rawat, W.; Wang, Z. Deep convolutional neural networks for image classifica-tion: A comprehensive review. Neural Comput. 2017, 29, 2352–2449. [Google Scholar] [CrossRef] [PubMed]
- Özsert Yiğit, G.; Özyildirim, B.M. Comparison of convolutional neural network models for food image classification. J. Inf. Telecommun. 2018, 2, 347–357. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Lathuiliere, S.; Mesejo, P.; Alameda-Pineda, X.; Horaud, R. A Comprehensive Analysis of Deep Regression. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2065–2081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BAIR. Euclidean Loss Layer. Available online: http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1EuclideanLossLayer.html#details (accessed on 28 June 2021).
- Peck, R.B.; Hanson, W.E.; Thornburn, T.H. Foundation Engineering. Soil Sci. 1953, 75, 329. [Google Scholar] [CrossRef]
- Swiss Standard, S.N. In 670 010b. In Characteristic Coefficients of Soils; Association of Swiss Road and Traffic Engineers: Zurich, Switzerland, 1999. [Google Scholar]
- Gonzalez, R.C.; Woods, R.E.; Masters, B.R. Digital Image Processing, 3rd ed.; Pearson International Edition: London, UK, 2008. [Google Scholar]
- Wang, Y.; Chen, Q.; Zhang, B. Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans. Consum. Electron. 1999, 45, 68–75. [Google Scholar] [CrossRef]
- Albataineh, N. Slope Stability Analysis Using 2D and 3D Methods. Ph.D. Thesis, University of Akron, Akron, OH, USA, 2006. [Google Scholar]
- Duncan, J.; Wright, S. The accuracy of equilibrium methods of slope stability analysis. Eng. Geol. 1980, 16, 5–17. [Google Scholar] [CrossRef]
- Cala, M.; Flisiak, J. Slope Stability Analysis with FLAC and Limit Equilibrium Methods; CRC Press: Boca Ranton, FL, USA, 2020; pp. 111–114. [Google Scholar]
- Cheng, Y.; Länsivaara, T.; Wei, W. Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Comput. Geotech. 2007, 34, 137–150. [Google Scholar] [CrossRef]
- Bishop, A.W. The use of the Slip Circle in the Stability Analysis of Slopes. Géotechnique 1955, 5, 7–17. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Krahn, J. Comparison of slope stability methods of analysis. Can. Geotech. J. 1977, 14, 429–439. [Google Scholar] [CrossRef]
- Abramson, L.W.; Lee, T.S.; Sharma, S.; Boyce, G.M. Slope Stability and Stabilization Methods; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Wright, S.G.; Kulhawy, F.H.; Duncan, J.M. Accuracy of Equilibrium Slope Stability Analysis. J. Soil Mech. Found. Div. 1973, 99, 783–791. [Google Scholar] [CrossRef]
- Aryal, K.P. Slope Stability Evaluations by Limit Equilibrium and Finite Element Methods. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2006. [Google Scholar]
- Whitman, R.V.; Bailey, W.A. Use of Computers for Slope Stability Analysis. J. Soil Mech. Found. Div. 1967, 93, 475–498. [Google Scholar] [CrossRef]
- Janbu, N. Slope stability computations. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 1975, 12, 67. [Google Scholar] [CrossRef]
- Janbu, N. Earth pressure and bearing capacity calculations by generalized procedure of slices. In Proceedings of the 4th International Conference SMFE, London, UK, 12–24 August 1957; pp. 207–212. [Google Scholar]
- Janbu, N. Slope Stability Computations; Soil Mechanics and Foundation Engineering Report; Technical University of Norway: Trondheim, Norway, 1968. [Google Scholar]
- Janbu, N. Application of composite slip surface for stability analysis. Proc. Eur. Conf. Stab. Earth Slopes 1954, 3, 43–49. [Google Scholar]
- Olivas, E.S.; Guerrero, J.D.M.; Martinez-Sober, M.; Magdalena-Benedito, J.R.; Serrano, L. Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques; IGI Global: Hershey, PA, USA, 2019. [Google Scholar]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How Transferable Are Features in Deep Neural Networks? arXiv 2014, arXiv:1411.1792. [Google Scholar]
- Zeiler, M.D. Adadelta: An adaptive learning rate method. arXiv 2012, arXiv:1212.5701. [Google Scholar]
Category | Range of FS | Label |
---|---|---|
First | Less than 0.8 | 0 |
Second | 0.8–0.9 | 1 |
Third | 0.9–1.0 | 2 |
Fourth | 1.0–1.1 | 3 |
Fifth | 1.1–1.2 | 4 |
Sixth | 1.2–1.3 | 5 |
Seventh | 1.3–1.4 | 6 |
Eighth | 1.4–1.5 | 7 |
Ninth | Greater than 1.5 | 8 |
Parameters | Descriptions | Formulations |
---|---|---|
Coordinates of Point 1 | ||
Coordinates of Point 2 | ||
Coordinates of Point 3 | ||
Coordinates of Point 4 | ||
Number of slices | 40 |
Soil Properties | Range | Unit | Color |
---|---|---|---|
Cohesion | 10–100 | kPa | Red |
Friction angle | 15–35 | Degrees | Blue |
Unit weight | 17–22 | kN/m3 | Green |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azmoon, B.; Biniyaz, A.; Liu, Z. Evaluation of Deep Learning against Conventional Limit Equilibrium Methods for Slope Stability Analysis. Appl. Sci. 2021, 11, 6060. https://doi.org/10.3390/app11136060
Azmoon B, Biniyaz A, Liu Z. Evaluation of Deep Learning against Conventional Limit Equilibrium Methods for Slope Stability Analysis. Applied Sciences. 2021; 11(13):6060. https://doi.org/10.3390/app11136060
Chicago/Turabian StyleAzmoon, Behnam, Aynaz Biniyaz, and Zhen (Leo) Liu. 2021. "Evaluation of Deep Learning against Conventional Limit Equilibrium Methods for Slope Stability Analysis" Applied Sciences 11, no. 13: 6060. https://doi.org/10.3390/app11136060
APA StyleAzmoon, B., Biniyaz, A., & Liu, Z. (2021). Evaluation of Deep Learning against Conventional Limit Equilibrium Methods for Slope Stability Analysis. Applied Sciences, 11(13), 6060. https://doi.org/10.3390/app11136060