Effects of Washing Solution, Washing Time, and Solid-Solution Rate on the Maximum Heavy Metals Removal Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Soil Analysis
2.2. Experiment for the Selection of Washing Solution
2.3. Experiment for the Selection of Washing Time
2.4. Experiment for the Selection of Solid-Solution Ratio
2.5. CCRD Experiment for Simultaneous Evaluation of Washing Time and Solid-Solution Ratio
2.6. Statistical Analysis
3. Results and Discussion
3.1. Soil Properties and Heavy Metal Contamination
3.2. Comparison of Heavy Metal Removal Efficiency According to the Type of Washing Solution
3.3. Comparison of Heavy Metal Removal Efficiency According to Washing Time
3.4. Comparison of Heavy Metal Removal Efficiency According to Solid-Solution Ratio
3.5. Simultaneous Evaluation of Washing Time and Solid-Solution Ratio in Heavy Metal Removal Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Juwarkar, A.A.; Singh, S.K.; Mudhoo, A. A comprehensive overview of elements in bioremediation. Rev. Environ. Sci. Biotechnol. 2010, 9, 215–288. [Google Scholar] [CrossRef]
- White, C.G.; Lee, D.J. Enzyme technology and biological remediation. Enzym. Microb. Technol. 2006, 38, 291–316. [Google Scholar] [CrossRef]
- Kim, S.H.; Song, S.K.; Suh, J.H. Field test assessment of biological recovering agent for treating oil contaminated soil. Kor. Soc. Biotechnol. Bioeng. 2010, 25, 73–78. [Google Scholar]
- Hamby, D.M. Site remediation techniques supporting environmental restoration activities—A review. Sci. Total Environ. 1996, 191, 203–224. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Singh, J.; Taneja, P.K.; Mandal, A. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: A review. Environ. Sci. Pollut. Res. 2020, 27, 1319–1333. [Google Scholar] [CrossRef]
- Gusiathin, Z.M.; Klimiuk, E. Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin. Chemosphere 2012, 86, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Dermont, G.; Bergeron, M.; Mercier, G.; Richer-Laflèche, M. Soil washing for metal removal: A review of physical/chemical technologies and field application. J. Hazard. Mater. 2008, 152, 1–31. [Google Scholar] [CrossRef]
- USEPA. Contaminants and Remedial Options at Selected Metal Contaminated Sites; EPA/540.R-95/512; Office of Research and Development: Washington, DC, USA, 1995.
- Shen, Z.; Hou, D.; Zhao, B.; Xu, W.; Ok, Y.S.; Bolan, N.S.; Alessi, D.S. Stability of heavy metals in soil washing residue with and without biochar addition under accelerated ageing. Sci. Total Environ. 2018, 619–620, 185–193. [Google Scholar] [CrossRef]
- Arwidsson, Z.; Elgh-Dalgren, K.; von Kronhelm, T.; Sjöberg, R.; Allard, B.; van Hees, P. Remediation of heavy metal contaminated soil washing residues with amino polycarboxylic acids. J. Hazard. Mater. 2010, 173, 697–704. [Google Scholar] [CrossRef]
- Riser-Roberts, E. Remediation of Petroleum Contaminated Soils: Biological, Physical, and Chemical Processes; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Abumaizar, R.; Khan, L.I. Laboratory investigation of heavy metal removal by soil washing. J. Air Waste Manag. Assoc. 1996, 46, 765–768. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.S.; Lee, S.H.; Kim, J.G. Assessment of fraction and mobility of arsenic in soil near the mine waste dam. Sustainability 2020, 12, 1480. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.W. Case of investigation and design of environment remediation of oil-contaminated soil/groundwater. Geoenviron. Eng. 2001, 2, 10–19. [Google Scholar]
- Chang, Y.Y.; Shin, J.Y.; Hwang, K.Y. Development of a pilot scale soil washing process. Kor. Soc. Soil Groundw. Environ. 1998, 3, 55–62. [Google Scholar]
- Lee, M.; Chung, S.Y.; Kang, D.; Choi, S.; Kim, M. Surfactant enhanced in-situ soil flushing pilot test for the soil and groundwater remediation in an oil contaminated site. Kor. Soc. Soil Groundw. Environ. 2002, 7, 77–86. [Google Scholar]
- National Institute of Agricultural Science and Technology. Method of Soil and Plant Analysis; Rural Development Administration: Suwon, Korea, 2008. [Google Scholar]
- Robertson, J.; Thomas, C.J.; Caddy, B.; Lewis, A.J.M. Particle size analysis of soils—A comparsion of dry and wet sieving techniques. Forensic Sci. Int. 1984, 24, 209–217. [Google Scholar] [CrossRef]
- ISO. Soil Quality–Extraction of Trace Element Soluble in Aqua Regia; ISO 11466; International Organization for Standardization: Geneva, Switzerland, 1995. [Google Scholar]
- Moghal, A.A.B.; Al-Shamrani, M.A.A.; Zahid, W.M. Heavy metal desorption studies on the artificially contaminated AL-QATIF soil. Int. J. Geomate. 2015, 8, 1323–1327. [Google Scholar]
- Kim, C.; Lee, Y.; Ong, S.K. Factors affecting EDTA extraction of lead from lead-contaminated soils. Chemosphere 2003, 51, 845–853. [Google Scholar] [CrossRef]
- Li, X.N.; Jiao, W.T.; Xiao, R.B.; Chen, W.P.; Chang, A.C. Soil pollution and site remediation policies in China: A Review. Environ. Rev. 2015, 23, 263–274. [Google Scholar] [CrossRef]
- Lim, H.S.; Lee, J.S.; Chon, H.T.; Sager, M. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea. J. Geochem. Explor. 2008, 96, 223–230. [Google Scholar] [CrossRef]
- Liu, X.; Song, Q.; Tang, Y.; Li, W.; Xu, J.; Wu, J.; Wang, F.; Brookes, P.C. Human health risk assessment of heavy metals in soil-vegetables system: A multi-median analysis. Sci. Total Environ. 2013, 463–464, 530–540. [Google Scholar] [CrossRef]
- Ngole, V.M. Using soil heavy metal enrichment and mobility factors to determine potential uptake by vegetables. Plant Soil Environ. 2011, 57, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Ko, I.; Lee, C.H.; Lee, K.P.; Lee, S.W.; Kim, K.W. Remediation of soil contaminated with arsenic, zinc, and nickel by pilot-scale soil washing. Environ. Prog. 2005, 25, 39–48. [Google Scholar] [CrossRef]
- Zou, Z.; Qiu, R.; Zhang, W.; Dong, H.; Zhao, Z.; Zhang, T.; Wei, X.; Cai, X. The study of operating variables in soil washing with EDTA. Environ. Pollut. 2009, 157, 229–236. [Google Scholar] [CrossRef]
- Qin, F.; Shan, X.Q.; Wei, B. Effets of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere 2004, 57, 253–263. [Google Scholar] [CrossRef]
- Yuan, S.; Xi, Z.; Jiang, Y.; Wan, J.; Wu, C.; Zheng, Z.; Lu, X. Desorption of copper and cadmium from soils enhanced by organic acids. Chemosphere 2007, 68, 1289–1297. [Google Scholar] [CrossRef]
- Elliott, H.A.; Herzig, L.M. Oxalate extraction of Pb and Zn from polluted soils: Solubility limitations. Soil Sediment Contam. 1999, 8, 105–116. [Google Scholar] [CrossRef]
- McBride, M.B. Environmental Soil Chemistry; Oxford Press: New York, NY, USA, 1994. [Google Scholar]
- Gzar, H.A.; Gatea, I.M. Extraction of heavy metals from contaminated soils using EDTA and HCl. J. Eng. 2015, 21, 45–61. [Google Scholar]
- Lee, S.H.; Kim, E.Y.; Seo, S.K.; Kim, K.B.; Kim, J.H.; Lee, J.K. Remediation of heavy metal contamination in OBOD site with soil washing: Selection of extractants. J. Kor. Soil. Sci. Groundwat. Eng. 2008, 13, 44–53. [Google Scholar]
- Du, Y.J.; Hayashi, S.; Xu, Y.F. Some factors controlling the adsorption of potassium ions on clayey soils. Appl. Clay Sci. 2004, 27, 209–213. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, K.S. Comparison of soil washing for heavy metal contaminated shooting range using various extracts. Econ. Environ. Geol. 2010, 42, 123–136. [Google Scholar]
- Wydro, U.; Jabłońska-Trypuć, A.; Hawrylik, E.; Butarewicz, A.; Rodziewicz, J.; Janczukowicz, W.; Wołejko, E. Heavy metals behavior in soil/plant system after sewage sludge application. Energies 2021, 14, 1584. [Google Scholar] [CrossRef]
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Cline, S.R.; Reed, B.E. Lead removal from soils via bench-scale soil washing techniques. J. Environ. Eng. 1995, 121, 700–705. [Google Scholar] [CrossRef]
- Assawadithalerd, M.; Phasukarratchai, N. Optimization of cadmium and zinc removal from contaminated soil by surfactants using mixture design and central composite rotatable design. Water Air Soil Pollut. 2020, 231, 1–12. [Google Scholar] [CrossRef]
- Koo, N.; Kim, M.S.; Hyun, S.; Kim, J.G. Effects of the incorporation of phosphorus and iron into arsenic-spiked artificial soils on root growth of lettuce using response surface methodology. Commum. Soil Sci. Plant Anal. 2013, 44, 1259–1271. [Google Scholar] [CrossRef]
Code | Actual Level | |||
---|---|---|---|---|
SSR 1 | Washing Time | SSR | Washing Time | |
Cube | −1 | −1 | 1:20 | 120 2 |
−1 | 1 | 1:20 | 240 | |
1 | −1 | 1:40 | 120 | |
1 | 1 | 1:40 | 240 | |
Star | 2 | 0 | 1:50 | 180 |
−2 | 0 | 1:10 | 180 | |
0 | −2 | 1:30 | 60 | |
0 | 2 | 1:30 | 300 | |
Central | 0 | 0 | 1:30 | 180 |
0 | 0 | 1:30 | 180 | |
0 | 0 | 1:30 | 180 | |
0 | 0 | 1:30 | 180 |
Code | Cd | Cu | Pb | Zn | |
---|---|---|---|---|---|
SSR 1 | Washing Time | mg kg−1 | |||
−1 | −1 | 12.4 ± 0.5 | 189.2 ± 8.6 | 575.9 ± 30.9 | 1254.6 ± 57.9 |
−1 | 1 | 12.6 ± 0.7 | 196.3 ± 9.6 | 595.8 ± 24.4 | 1351.7 ± 47.2 |
1 | −1 | 12.5 ± 0.2 | 185.1 ± 3.7 | 591.4 ± 17.6 | 1248.5 ± 20.9 |
1 | 1 | 13.1 ± 0.9 | 197.1 ± 14.9 | 620.8 ± 51.6 | 1360.0 ± 104.6 |
2 | 0 | 12.7 ± 1.0 | 187.6 ± 16.4 | 580.4 ± 52.2 | 1288.2 ± 109.3 |
−2 | 0 | 13.5 ± 0.9 | 209.9 ± 19.6 | 602.5 ± 52.3 | 1354.9 ± 121.1 |
0 | −2 | 12.1 ± 0.3 | 178.6 ± 2.4 | 537.9 ± 5.70 | 1097.1 ± 17.8 |
0 | 2 | 12.5 ± 0.6 | 188.1 ± 10.4 | 574.0 ± 28.7 | 1274.5 ± 98.7 |
0 | 0 | 12.5 ± 0.8 | 184.4 ± 14.4 | 559.0 ± 63.8 | 1205.2 ± 125.9 |
0 | 0 | 13.4 ± 0.5 | 203.1 ± 8.2 | 631.6 ± 32.9 | 1348.8 ± 31.9 |
0 | 0 | 13.5 ± 0.7 | 202.5 ± 10.8 | 641.5 ± 42.4 | 1345.5 ± 66.6 |
0 | 0 | 13.0 ± 0.8 | 196.1 ± 12.6 | 619.4 ± 41.1 | 1334.8 ± 89.1 |
r2 | adj.-r2 | Model 1 | |
---|---|---|---|
Cd | 0.391 | 0.200 | RE(%) = 74.7 − 1.94x1 + 1.14x2 − 1.81x12 − 0.68x22 + 0.03x1x2 |
Cu | 0.479 | 0.317 | RE(%) = 74.5 − 2.93x1 + 1.67x2 − 1.62x12 − 0.84x22 + 0.38x1x2 |
Pb | 0.443 | 0.269 | RE(%) = 84.2 − 1.86x1 + 2.02x2 − 2.78x12 − 1.25x22 + 0.29x1x2 |
Zn | 0.498 | 0.341 | RE(%) = 76.6 − 2.23x1 + 3.35x2 − 1.87x12 − 1.22x22 + 0.63x1x2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.-S.; Koo, N.; Kim, J.-G.; Lee, S.-H. Effects of Washing Solution, Washing Time, and Solid-Solution Rate on the Maximum Heavy Metals Removal Efficiency. Appl. Sci. 2021, 11, 6398. https://doi.org/10.3390/app11146398
Kim M-S, Koo N, Kim J-G, Lee S-H. Effects of Washing Solution, Washing Time, and Solid-Solution Rate on the Maximum Heavy Metals Removal Efficiency. Applied Sciences. 2021; 11(14):6398. https://doi.org/10.3390/app11146398
Chicago/Turabian StyleKim, Min-Suk, Namin Koo, Jeong-Gyu Kim, and Sang-Hwan Lee. 2021. "Effects of Washing Solution, Washing Time, and Solid-Solution Rate on the Maximum Heavy Metals Removal Efficiency" Applied Sciences 11, no. 14: 6398. https://doi.org/10.3390/app11146398
APA StyleKim, M.-S., Koo, N., Kim, J.-G., & Lee, S.-H. (2021). Effects of Washing Solution, Washing Time, and Solid-Solution Rate on the Maximum Heavy Metals Removal Efficiency. Applied Sciences, 11(14), 6398. https://doi.org/10.3390/app11146398