Luminex Multiplex Bead Assay Monitoring HLA IgG Antibodies in Sensitized Pre- and Post-transplant Patients: Clonality of the Detection Antibody Impacts Specificity and Sensitivity
Abstract
:1. Introduction
2. Material and Methods
2.1. Patients Sera
2.2. Luminex Multiplex SAB Assay
2.2.1. SABs from Different Vendors
- (i)
- LS-SAB class I (Cat. # LS1A04, Lot#10) and class II (Cat. # LS2A01, Lot#12) (Thermo Fisher/One Lambda, Canoga Park, CA, USA);
- (ii)
- LC-SAB class I (Cat. # 265100R, Lot # 3005613) and class II (Cat. # 265200R, Lot # 3005537) (Immucor, Norcross, GA, USA).
2.2.2. The HLA-I Polyreactive mAb TFL-006 as Quality Control Reagent to Monitor HLA-I OC on the SABs
2.2.3. The HLA-II Polyreactive mAb TFL-FJ5109 Identifies HLA-II-OC on LS-SAB
2.2.4. Modifications in the Assay Protocol for Comparing the Different SABs
- Step 1.
- We subtracted MFI of PBS only from trimmed MFI. This is an essential step because when antibodies were tested on beads with PBS alone, differential MFI values were observed with different HLA molecules.
- Step 2.
- We used (trim mean MFI-PBS MFI) to subtract the following:
- Negative control MFI (NC MFI);
- Negative sera value obtained with LS-SABs (NGS-LS);
- Negative sera value obtained with LC-SABs (NGS-LC);
- B and C were added and divided by 2 for correction.
2.2.5. The Diversity of the Secondary Detection Abs
2.3. cPRA Calculations
2.4. Statistical Analysis
3. Results
3.1. HLA Sensitization (Number of Abs against HLA Alleles and the MFI of Abs in the Patients Differ between LS-SAB and LC-SAB and between Two Detection Abs
3.1.1. Differences in the HLA Antigens Recognized by Sera HLA Abs
- Group 1 (low sensitization): sera IgG reacting to <10 HLA antigens (n = 6);
- Group 2 (moderate sensitization): sera IgG reacting to 11–20 HLA antigens (n = 5);
- Group 3 (high sensitization): sera IgG reacting to >20 HLA antigens (n = 8).
- Group 1 (low sensitization): sera IgG reacting to <15 HLA antigens (n = 8);
- Group 2 (high sensitization): sera IgG reacting to >15 HLA antigens (n = 5).
- (I)
- The number of HLA-I and HLA-II alleles recognized by sera Abs is significantly higher on the LS-SAB than on LC-SAB, with both the detection Abs (numbers in bold in Figure 1);
- (II)
- The FcMonoIgG recognized a significantly (two-tailed t-test) higher number of Abs than IgHPolyFab, for both the HLA-I and II antigens (number in bold in Figure 2), from moderate-to-high sensitization groups;
- (III)
- Sera IgG of several patients (2DM, 6FG, 10DM, 12DM, 19HN, and 20HN) did not react with any of the HLA-II antigens, with both the detection-Abs, while these sera reacted moderately (2DM and 6FG) or highly (10DM, 12DM, 19HN and 20 HN) with HLA-I antigens.
3.1.2. Differential Binding Patterns of anti-HLA IgG Abs on LS- and LC-SABs
- A*01:01, 02:03, 11:02, 23:01, 24:03, 29:01, and A*80:01 (7 out of 28 HLA-A alleles);
- B*15:12, 40:02, 44:02, 47:01, 49:01, and B*54:01 (6 out of 43 HLA-B alleles);
- C*01:02, 02:02, 03:03, 03:04, 06:02, 08:01, and C*14:02 (6 out of 13 HLA-C alleles).
3.1.3. Differences in the Resolution with and the Sensitivity of the Detection Abs
- The MFI obtained for anti-HLA Abs against HLA-I alleles are frequently higher with FcMonoIgG;
- Several sera Abs (e.g., 3LE, 7HN, 13LE, 14HN), with a high MFI with FcMonoIgG, were too low or negative with IgHPolyFab, with both LS and LC;
- Some sera Abs (e.g., 14HN, 5DM, 2DM, 6FC), though positive with IgHPolyFab (Figure 2), had MFIs with FcMonoIgG that were consistently higher with LC-SAB;
- Several sera (e.g., 3LE, 11DM, 13LE 15NA, 17LE, 18PK) anti-HLA-II Abs (Figure 3), when positive on both SABs, also showed a very high MFI with FcMonoIgG (bold values), while the reactivity with IgHPolyFab was low or negative with both LC and LS.
- For HLA-I antigens on LS-SAB, 38 MFI values were obtained, of which 30 were higher with FcMonoIgG. On LC-SAB, 38 MFI values were obtained, of which 34 were higher with FcMonoIgG;
- For HLA-II antigens on LS-SABs, 12 sera tested positive. Of the 45 MFI values obtained with these sera, 43 MFIs were markedly higher with FcMonoIgG. On LC-SABs, all the 27 MFI values obtained with the nine sera were remarkably higher, only with FcMonoIgG.
- (a)
- Both the sum and mean MFI values of the anti-HLA-I Abs in group 2 and 3 (moderately or highly sensitized groups) are persistently higher with LC than with LS when tested with FcMonoIgG. All three groups combined are strikingly higher with LC than with LS when tested with FcMonoIgG;
- (b)
- With LC-SAB, the sum and mean MFI values for HLA-I Abs assessed using FcMonoIgG are 4.4-fold higher than with IgHPolyFab; whereas, with LS-SAB, the reactivity with FcMonoIgG is just 2.2 to 2.4 higher than that of IgHPolyFab;
- (c)
- In poorly sensitized patients, the sum and mean MFIs are higher with LS than with LC when tested with FcMonoIgG or IgHPolyFab. The MFIs with both the SABs with IgHPolyFab, though almost half of the values were obtained with FcMonoIgG, were higher with LS than with LC;
- (d)
- Similarly, both the sum and mean MFIs of all anti-HLA-II reactivity with FcMonoIgG are significantly enhanced four-fold, relative to IgHPolyFab;
- (e)
- The maximum MFI observed with FcMonoIgG, compared to IgHPolyFab, is higher for LS than for LC.
3.2. Documentation of the Open Conformers (OC) on the Different Lots of LS and Lack of the Same in LC-SAB
3.3. Admixture of OC with CC on LS-SAB and Use of IgHPolyFab Impacts a Reliable Estimation of % cPRA of Serum HLA Abs of Waitlist Patients
- (a)
- The % cPRA may not be reliable with LS-SAB, due to the presence of an admixture of OC with CC, as negative cPRA was observed with LC (e.g., 9NA, 18PK, 15NA, and 16HN);
- (b)
- LS-SAB with IgHPolyFab showed negative cPRA, yet the same SAB (LS) with FcMonoIgG showed distinct positive cPRA in the following patients: 4LE and 3LE;
- (c)
- The reliability of FcMonoIgG is inferred when the cPRA is positive (35–50%) or highly positive (>50%), only with FcMonoIgG, but not with IgHPolyFab, with both the SABs in the following patients: 3LE and 13LE.
- (a)
- LS-SAB with IgHPolyFab showed negative cPRA, while the % cPRA was observed with FcMonoIgG on both the SABs (1DM, 4LE, 8DM, and 16HN);
- (b)
- The % cPRA may not be reliable with LS, possibly due to the presence of an admixture of OC with CC, due to the negative cPRA observed with LC in the following patient: 5DM.
4. Discussion
4.1. LC-SABs with FcMonoIgG Is Better for Monitoring anti-HLA CC IgG Abs
4.2. Limitations of This Investigation
4.3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Contribution to the Field
Ethics Statement
References
- Jordan, S.C.; Tyan, D.; Stablein, D.; McIntosh, M.; Rose, S.; Vo, A.; Toyoda, M.; Davis, C.; Shapiro, R.; Adey, D.; et al. Evaluation of Intravenous Immunoglobulin as an Agent to Lower Allosensitization and Improve Transplantation in Highly Sensitized Adult Patients with End-Stage Renal Disease: Report of the NIH IG02 Trial. J. Am. Soc. Nephrol. 2004, 15, 3256–3262. [Google Scholar] [CrossRef]
- Loupy, A.; Hill, G.S.; Jordan, S.C. The impact of donor-specific anti-HLA antibodies on late kidney allograft failure. Nat. Rev. Nephrol. 2012, 8, 348–357. [Google Scholar] [CrossRef]
- Taylor, D.O.; Edwards, L.B.; Boucek, M.M.; Trulock, E.P.; Aurora, P.; Christie, J.; Dobbels, F.; Rahmel, A.O.; Keck, B.M.; Hert, M.I. Registry of the International Society for Heart and Lung Transplantation: Twenty-fourth official adult heart transplant report—2007. J. Heart Lung Transplant. 2007, 26, 769–781. [Google Scholar] [CrossRef]
- Potena, L.; Bontadini, A.; Iannelli, S.; Fruet, F.; Leone, O.; Barberini, F.; Borgese, L.; Manfredini, V.; Masetti, M.; Magnani, G.; et al. Occurrence of Fatal and Nonfatal Adverse Outcomes after Heart Transplantation in Patients with Pretransplant Noncytotoxic HLA Antibodies. J. Transplant. 2013, 2013, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Appel, J.Z.; Hartwig, M.G.; Cantu, E.; Palmer, S.M.; Reinsmoen, N.L.; Davis, R.D. Role of Flow Cytometry to Define Unacceptable HLA Antigens in Lung Transplant Recipients with HLA-Specific Antibodies. Transplantation 2006, 81, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Bharat, A.; Saini, D.; Steward, N.; Hachem, R.; Trulock, E.P.; Patterson, G.A.; Meyers, B.F.; Mohanakumar, T. Antibodies to self-antigens predispose to primary lung allograft dysfunction and chronic rejection. Ann. Thorac. Surg. 2010, 90, 1094–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasiske, B.L.; Skeans, M.A.; Leighton, T.R.; Ghimire, V.; Leppke, S.N.; Israni, A.K. OPTN/SRTR 2011 Annual Data Report: International Data. Am. J. Transplant. 2012, 13, 199–225. [Google Scholar] [CrossRef]
- Terasaki, P.I.; Ozawa, M. Predicting kidney graft failure by HLA antibodies: A prospective trial. Am. J. Transplant. 2004, 4, 438–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- TTerasaki, P.; Cai, J. Humoral theory of transplantation: Further evidence. Curr. Opin. Immunol. 2005, 17, 541–545. [Google Scholar] [CrossRef]
- Terasaki, P.I.; Ozawa, M.; Castro, R. Four-year follow-up of a prospective trial of HLA and MICA antibodies on kidney graft survival. Am. J. Transplant. 2007, 7, 408–415. [Google Scholar] [CrossRef]
- Terasaki, P.I.; Cai, J. Human leukocyte antigen antibodies and chronic rejection: From association to causation. Transplantation 2008, 86, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Issa, N.; Cosio, F.G.; Gloor, J.M.; Sethi, S.; Dean, P.G.; Moore, S.B.; DeGoey, S.; Stegall, M.D. Transplant glomerulopathy: Risk and prognosis related to anti-human leukocyte antigen class ii antibody levels. Transplantation 2008, 86, 681–685. [Google Scholar] [CrossRef]
- Lachmann, N.; Terasaki, P.I.; Budde, K.; Liefeldt, L.; Kahl, A.; Reinke, P.; Pratschke, J.; Rudolph, B.; Schmidt, D.; Salama, A.; et al. Anti-human leukocyte antigen and donor-specific antibodies detected by Luminex posttransplant serve as biomarkers for chronic rejection of renal allografts. Transplantation 2009, 87, 1505–1513. [Google Scholar] [CrossRef]
- Gao, B.; Rong, C.; Porcheray, F.; Moore, C.; Girouard, T.C.; Saidman, S.L.; Wong, W.; Fu, Y.; Zorn, E. Evidence to Support a Contribution of Polyreactive Antibodies to HLA Serum Reactivity. Transplantation 2016, 100, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Süsal, C.; Fichtner, A.; Tönshoff, B.; Mehrabi, A.; Zeier, M.; Morath, C. Clinical Relevance of HLA Antibodies in Kidney Transplantation: Recent Data from the Heidelberg Transplant Center and the Collaborative Transplant Study. J. Immunol. Res. 2017, 2017, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Süsal, C.; Ovens, J.; Mahmoud, K.M.; Döhler, B.; Scherer, S.; Ruhenstroth, A.; Tran, T.H.; Heinold, A.; Opelz, G. No association of kidney graft loss with human leukocyte antigen antibodies detected exclusively by sensitive Luminex single-antigen testing: A collaborative transplant study report. Transplantation 2011, 91, 883–887. [Google Scholar] [CrossRef]
- Poli, F.; Benazzi, E.; Innocente, A.; Nocco, A.; Cagni, N.; Gianatti, A.; Fiocchi, R.; Scalamogna, M. Heart transplantation with donor-specific antibodies directed toward denatured HLA-A*02:01: A case report. Hum. Immunol. 2011, 72, 1045–1048. [Google Scholar] [CrossRef]
- PPereira, S.; Perkins, S.; Lee, J.-H.; Shumway, W.; Lefor, W.; Lopez-Cepero, M.; Wong, C.; Connolly, A.; Tan, J.C.; Grumet, F.C. Donor-specific antibody against denatured HLA-A1: Clinically nonsignificant? Hum. Immunol. 2011, 72, 492–498. [Google Scholar] [CrossRef]
- Salvadé, I.; Aubert, V.; Venetz, J.-P.; Golshayan, D.; Saouli, A.-C.; Matter, M.; Rotman, S.; Pantaleo, G.; Pascual, M. Clinically-relevant threshold of preformed donor-specific anti-HLA antibodies in kidney transplantation. Hum. Immunol. 2016, 77, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Courant, M.; Visentin, J.; Linares, G.; Dubois, V.; Lepreux, S.; Guidicelli, G.; Thaunat, O.; Merville, P.; Couzi, L.; Taupin, J.-L. The disappointing contribution of anti-human leukocyte antigen donor-specific antibodies characteristics for predicting allograft loss. Nephrol. Dial. Transplant. 2018, 33, 1853–1863. [Google Scholar] [CrossRef] [PubMed]
- Kamburova, E.G.; Wisse, B.W.; Joosten, I.; Allebes, W.A.; Van Der Meer, A.; Hilbrands, L.B.; Baas, M.C.; Spierings, E.; Hack, C.E.; Van Reekum, F.E.; et al. Pretransplant C3d-Fixing Donor-Specific Anti-HLA Antibodies Are Not Associated with Increased Risk for Kidney Graft Failure. J. Am. Soc. Nephrol. 2018, 29, 2279–2285. [Google Scholar] [CrossRef] [Green Version]
- McCaughan, J.; Xu, Q.; Tinckam, K. Detecting donor-specific antibodies: The importance of sorting the wheat from the chaff. Hepatobiliary Surg. Nutr. 2019, 8, 37–52. [Google Scholar] [CrossRef]
- Arosa, F.A.; Esgalhado, A.J.; Padrão, C.A.; Cardoso, E.M. Divide, Conquer, and Sense: CD8+CD28—T Cells in Perspective. Front. Immunol. 2013, 4, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arosa, F.A.; Santos, S.G.; Powis, S.J. Open conformers: The hidden face of MHC-I molecules. Trends Immunol. 2007, 28, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Schnabl, E.; Stockinger, H.; Majdic, O.; Gaugitsch, H.; Lindley, I.J.; Maurer, D.; Hajek-Rosenmayr, A.; Knapp, W. Activated human T lymphocytes express MHC class I heavy chains not associated with beta 2-microglobulin. J. Exp. Med. 1990, 171, 1431–1442. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, T.N.; Heemels, M.T.; Neefjes, J.; Kast, W.; Melief, C.J.; Ploegh, H.L. Direct binding of peptide to empty MHC class I molecules on intact cells and in vitro. Cell 1990, 62, 563–567. [Google Scholar] [CrossRef]
- Benjamin, R.J.; Madrigal, J.A.; Parham, P. Peptide binding to empty HLA-B27 molecules of viable human cells. Nat. Cell Biol. 1991, 351, 74–77. [Google Scholar] [CrossRef]
- Majdic, O.; Schnabl, E.; Stockinger, H.; Gadd, S.; Maurer, D.; Radaszkiewics, T. LA45, an activation-induced human lymphocyte antigen with strong homology to MHC class I molecules. In Leukocyte Typing IV; Oxford University Press: Oxford, UK, 1989; Volume 511, 8p. [Google Scholar]
- Madrigal, J.A.; Belich, M.P.; Benjamin, R.; Little, A.M.; Hildebrand, W.H.; Mann, D.L.; Parham, P. Molecular definition of a polymorphic antigen (LA45) of free HLA-A and -B heavy chains found on the surfaces of activated B and T cells. J. Exp. Med. 1991, 174, 1085–1095. [Google Scholar] [CrossRef] [Green Version]
- Raine, T.; Brown, D.; Bowness, P.; Gaston, J.S.H.; Moffett, A.; Trowsdale, J.; Allen, R. Consistent patterns of expression of HLA class I free heavy chains in healthy individuals and raised expression in spondyloarthropathy patients point to physiological and pathological roles. Rheumatology 2006, 45, 1338–1344. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, E.M.; Esgalhado, A.; Patrao, L.; Santos, M.; Neves, V.P.; Martinez, J.; Patto, M.A.V.; Silva, H.; Arosa, F.A. Distinctive CD8+ T cell and MHC class I signatures in polycythemia vera patients. Ann. Hematol. 2018, 97, 1563–1575. [Google Scholar] [CrossRef]
- Santos, S.G.; Powis, S.J.; Arosa, F.A. Misfolding of major histocompatibility complex class I molecules in activated T Cells allows cis-interactions with receptors and signaling molecules and is associated with tyrosine phosphorylation. J. Biol. Chem. 2004, 279, 53062–53070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Middelburg, R.; Porcelijn, L.; Lardy, N.; Briët, E.; Vrielink, H. Prevalence of leucocyte antibodies in the Dutch donor population. Vox Sang. 2010, 100, 327–335. [Google Scholar] [CrossRef]
- Hyun, J.; Park, K.D.; Yoo, Y.; Lee, B.; Han, B.Y.; Song, E.Y.; Park, M.H. Effects of different sensitization events on HLA alloimmunization in solid organ transplantation patients. Transplant. Proc. 2012, 44, 222–225. [Google Scholar] [CrossRef]
- Hilton, H.G.; Parham, P. Direct binding to antigen-coated beads refines the specificity and cross-reactivity of four monoclonal antibodies that recognize polymorphic epitopes of HLA class I molecules. Tissue Antigens 2013, 81, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Oh, E.-J.; Park, H.; Park, K.U.; Kang, E.-S.; Kim, H.-S.; Song, E.Y. Interlaboratory comparison of the results of Lifecodes LSA class I and class II single antigen kits for human leukocyte antigen antibody detection. Ann. Lab. Med. 2015, 35, 321–328. [Google Scholar] [CrossRef]
- Minucci, P.B.; Resse, M.; Sabia, C.; Esposito, A.; De Iorio, G.; Napoli, C. Anti-HLA Antibodies Testing on Solid Phase: Comparative Evaluation of Different Kit Vendors T\through Luminex Technology. Exp. Clin. Transplant. 2017, 15, 636–640. [Google Scholar] [CrossRef] [PubMed]
- Kamburova, E.G.; Wisse, B.W.; Joosten, I.; Allebes, W.A.; Van Der Meer, A.; Hilbrands, L.B.; Baas, M.C.; Spierings, E.; Hack, C.E.; Van Reekum, F.E.; et al. Differential effects of donor-specific HLA antibodies in living versus deceased donor transplant. Am. J. Transplant. 2018, 18, 2274–2284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moise, A.; Nedelcu, D.; Toader, A.; Sora, M.; Tica, A.; Ferastraoaru, D.E.; Constantinescu, I. Cytotoxic antibodies—Valuable prognostic factor for long term kidney allograft survival. J. Med. Life 2010, 3, 390–395. [Google Scholar] [PubMed]
- Jung, S.; Oh, E.-J.; Yang, C.-W.; Ahn, W.-S.; Kim, Y.; Park, Y.-J.; Han, K. Comparative evaluation of ELISA and Luminex panel reactive antibody assays for HLA alloantibody screening. Ann. Lab. Med. 2009, 29, 473–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battle, R.K.; Abel, A.A.; Turner, D.M. Prozone effect can be specific to single antigen bead kit manufacturers. Am. J. Transplant. 2017, 17, 1425–1426. [Google Scholar] [CrossRef] [Green Version]
- Clerkin, K.J.; See, S.B.; Farr, M.A.; Restaino, S.W.; Serban, G.; Latif, F.; Li, L.; Colombo, P.C.; Vlad, G.; Ray, B.; et al. Comparative assessment of anti-HLA antibodies using two commercially available luminex-based assays. Transplant. Direct 2017, 3, e218. [Google Scholar] [CrossRef]
- Bertrand, D.; Farce, F.; Laurent, C.; Hamelin, F.; François, A.; Guerrot, D.; Etienne, I.; Hau, F. Comparison of Two Luminex Single-antigen Bead Flow Cytometry Assays for Detection of Donor-specific Antibodies after Renal Transplantation. Transplantation 2019, 103, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Ravindranath, M.H.; Jucaud, V.; Ferrone, S. Monitoring native HLA-I trimer specific antibodies in Luminex multiplex single antigen bead assay: Evaluation of beadsets from different manufacturers. J. Immunol. Methods 2017, 450, 73–80, Corrigendum to Monitoring native HLA-I trimer specific antibodies in Luminex multiplex single antigen bead assay: Evaluation of SABs from different manufacturers. J. Immunol. Methods 2018, 460, 125. [Google Scholar] [CrossRef] [PubMed]
- Jucaud, V.; Ravindranath, M.H.; Terasaki, P.I. Conformational Variants of the Individual HLA-I Antigens on Luminex Single Antigen Beads Used in Monitoring HLA Antibodies: Problems and Solutions. Transplantation 2017, 101, 764–777. [Google Scholar] [CrossRef] [PubMed]
- Ravindranath, M.H.; Flippone, E.J.; Mahowald, G.; Callender, C.; Babu, A.; Saidman, S.; Ferrone, S. Significance of the intraindividual variability of HLA IgG antibodies in renal disease patients observed with different SABs monitored with two different secondary antibodies on a Luminex platform. Immunologic Res. 2018, 66, 584–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santambrogio, L.; Sato, A.K.; Fischer, F.R.; Dorf, M.E.; Stern, L.J. Abundant empty class II MHC molecules on the surface of immature dendritic cells. Proc. Natl. Acad. Sci. USA 1999, 96, 15050–15055. [Google Scholar] [CrossRef] [Green Version]
- Grenzi, P.C.; De Marco, R.; Silva, R.Z.; Campos, E.F.; Gerbase-DeLima, M. Antibodies against denatured HLA class II molecules detected in luminex-single antigen assay. Hum. Immunol. 2013, 74, 1300–1303. [Google Scholar] [CrossRef]
- Michel, K.; Santella, R.; Steers, J.; Sahajpal, A.; Downey, F.X.; Thohan, V.; Oaks, M. Many de novo donor-specific antibodies recognize β 2 -microglobulin-free, but not intact HLA heterodimers. HLA 2016, 87, 356–366. [Google Scholar] [CrossRef] [Green Version]
- Gombos, P.; Süsal, C.; Opelz, G.; Scherer, S.; Morath, C.; Zeier, M.; Schemmer, P. Influence of test technique on sensitization status of patients on the kidney transplant waiting list. Am. J. Transplant. 2013, 13, 2075–2082. [Google Scholar] [CrossRef]
- Ravindranath, M.H.; Jucaud, V.; Banuelos, N.; Everly, M.J.; Cai, J.; Nguyen, A.; Terasaki, P.I. Nature and clonality of the fluoresceinated secondary antibody in Luminex multiplex bead assays are critical factors for reliable monitoring of serum HLA antibody levels in patients for donor organ selection, desensitization therapy, and assessment of the risk for graft loss. J. Immunol. 2017, 198, 4524–4538. [Google Scholar] [CrossRef] [Green Version]
- Cicciarelli, J.C.; Kasahara, N.; Lemp, N.A.; Adamson, R.; Dembitsky, W.; Browne, B.; Steinberg, S. Immunoglobulin G subclass analysis of HLA donor specific antibodies in heart and renal transplant recipients. Clin. Transplant. 2013, 2013, 413–422. [Google Scholar]
- Ravindranath, M.H.; Terasaki, P.I.; Pham, T.; Jucaud, V.; Kawakita, S. Therapeutic preparations of IVIg contain naturally occurring anti-HLA-E Abs that react with HLA-Ia (HLA-A/-B/-Cw) alleles. Blood 2013, 121, 2013–2028. [Google Scholar] [CrossRef] [Green Version]
- Ravindranath, M.H.; Zhu, D.; Pham, T.; Jucaud, V.; Hopfield, J.; Kawakita, S.; Terasaki, P.I. Anti-HLA-E monoclonal Abs reacting with HLA-la and lb alleles like IVIg as potential IVIg-immunomimetics: An evolving therapeutic concept. Clin. Transplant. 2013, 2013, 293–305. [Google Scholar]
- Ravindranath, M.H.; Pham, T.; El-Awar, N.; Kaneku, H.; Terasaki, P.I. Anti-HLA-E mAb 3D12 mimics MEM-E/02 in binding to HLA-B and HLA-C alleles: Web-tools validate the immunogenic epitopes of HLA-E recognized by the Abs. Mol Immunol. 2011, 48, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Ravindranath, M.H.; Taniguchi, M.; Chen, C.W.; Ozawa, M.; Kaneku, H.; El-Awar, N.; Cai, J.; Terasaki, P.I. HLA-E monoclonal antibodies recognize shared peptide sequences on classical HLA class Ia: Relevance to human natural HLA antibodies. Mol. Immunol. 2010, 47, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Cecka, J.M.; Zhang, Q.; Reed, E.F. Preformed cytotozic antibodies in potential allograft recipients: Recent data. Hum. Immunol. 2005, 66, 343–349. [Google Scholar] [CrossRef]
- Ravindranath, M.H.; Filippone, E.J.; Callender, C.J.; Arosa, F.A.; Das, B.; Ou, Y.; Norin, A.J. Antibodies to Cryptic Epitopes on HLA Class I and Class II Heavy Chains Bound to Single Antigen Beads: Clinical Relevance. Transplant Immunol. 2021. (submitted). [Google Scholar]
- Porcheray, F.; DeVito, J.; Helou, Y.; Dargon, I.; Fraser, J.W.; Nobecourt, P.; Ferdman, J.; Germana, S.; Girouard, T.C.; Kawai, T.; et al. Expansion of polyreactive B Cells cross-reactive to HLA and self in the blood of a patient with kidney graft rejection. Am. J. Transplant. 2012, 12, 2088–2097. [Google Scholar] [CrossRef] [Green Version]
- Ravindranath, M.H.; El Hilali, F. Monospecific and Polyreactive MAbs against Human Leukocyte Antigen-E: Diagnostic and Therapeutic Relevance. In Monoclonal Antibodies; Resaei, N., Ed.; Intech Open: London, UK, 2021; 38p, ISBN 978-1-83968-370-1. [Google Scholar]
- Ravindranath, M.H. HLA Class Ia and Ib Polyreactive Anti-HLA-E IgG2a MAbs (TFL-006 and TFL-007) Suppress Anti-HLA IgG Production by CD19+ B-cells and Proliferation of CD4+ T-cells While Upregulating Tregs. J. Immunol. Res. 2017, 2017, 3475926. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravindranath, M.H.; Ravindranath, N.M.; Amato-Menker, C.J. Luminex Multiplex Bead Assay Monitoring HLA IgG Antibodies in Sensitized Pre- and Post-transplant Patients: Clonality of the Detection Antibody Impacts Specificity and Sensitivity. Appl. Sci. 2021, 11, 6430. https://doi.org/10.3390/app11146430
Ravindranath MH, Ravindranath NM, Amato-Menker CJ. Luminex Multiplex Bead Assay Monitoring HLA IgG Antibodies in Sensitized Pre- and Post-transplant Patients: Clonality of the Detection Antibody Impacts Specificity and Sensitivity. Applied Sciences. 2021; 11(14):6430. https://doi.org/10.3390/app11146430
Chicago/Turabian StyleRavindranath, Mepur H., Narendranath M. Ravindranath, and Carly J. Amato-Menker. 2021. "Luminex Multiplex Bead Assay Monitoring HLA IgG Antibodies in Sensitized Pre- and Post-transplant Patients: Clonality of the Detection Antibody Impacts Specificity and Sensitivity" Applied Sciences 11, no. 14: 6430. https://doi.org/10.3390/app11146430
APA StyleRavindranath, M. H., Ravindranath, N. M., & Amato-Menker, C. J. (2021). Luminex Multiplex Bead Assay Monitoring HLA IgG Antibodies in Sensitized Pre- and Post-transplant Patients: Clonality of the Detection Antibody Impacts Specificity and Sensitivity. Applied Sciences, 11(14), 6430. https://doi.org/10.3390/app11146430