An Expert Artificial Intelligence Model for Discriminating Microseismic Events and Mine Blasts
Abstract
:1. Introduction
2. Data
2.1. Outline of the Mine and Microseismic Monitoring System
2.2. Discriminant Parameters and Sample Dataset
3. Methodology
3.1. Backpropagation Neural Network (BPNN)
3.2. Naive Bayesian Classifier(NBC)
3.3. Fisher Discriminant Analysis (FDA)
3.4. Extreme Learning Machine (ELM)
3.5. Particle Swarm Optimization (PSO)
3.6. PSO-ELM Algorithm
4. Experimental Study
4.1. Development of the BPNN Model
4.2. Development of the NBC Model
4.3. Development of the FDA Model
4.4. Development of the ELM Model
4.5. Development of PSO-ELM Model
4.6. Quality Measures
5. Results and Discussions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.Y.; Jiang, R.C.; Li, B.; Xu, N.W. An automatic recognition method of microseismic signals based on EEMD-SVD and ELM. Comput. Geosci. 2019, 133. [Google Scholar] [CrossRef]
- Liu, J.P.; Feng, X.T.; Li, Y.H.; Xu, S.D.; Sheng, Y. Studies on temporal and spatial variation of microseismic activities in a deep metal mine. Int. J. Rock Mech. Min. Sci. 2013, 60, 171–179. [Google Scholar] [CrossRef]
- Potvin, Y.; Hudyma, M.R. Seismic monitoring in highly mechanized hardrock mines in Canada and Australia. In Proceedings of the 5th International Symposium on Rockburst and Seismicity in Mines Proceedings, Johannesbury, South Africa, 1 January 2001; pp. 1–22. [Google Scholar]
- Li, B.; Li, T.; Xu, N.W.; Dai, F.; Chen, W.F.; Tan, Y.S. Stability assessment of the left bank slope of the Baihetan Hydropower Station, Southwest China. Int. J. Rock Mech. Min. Sci. 2018, 104, 34–44. [Google Scholar] [CrossRef]
- Dai, F.; Jiang, P.; Xu, N.W.; Chen, W.F.; Tan, Y.S. Focal mechanism determination for microseismic events and its application to the left bank slope of the Baihetan hydropower station in China. Environ. Earth Sci. 2018, 77, 1–15. [Google Scholar] [CrossRef]
- Xu, N.W.; Li, T.B.; Dai, F.; Li, B.; Zhu, Y.G.; Yang, D.S. Microseismic monitoring and stability evaluation for the large scale underground caverns at the Houziyan hydropower station in Southwest China. Eng. Geol. 2015, 188, 48–67. [Google Scholar] [CrossRef]
- Dai, F.; Li, B.; Xu, N.W.; Fan, Y.L.; Zhang, C.Q. Deformation forecasting and stability analysis of large-scale underground powerhouse caverns from microseismic monitoring. Int. J. Rock Mech. Min. Sci. 2016, 86, 269–281. [Google Scholar] [CrossRef]
- Feng, X.T.; Chen, B.R.; Li, S.J.; Zhang, C.Q.; Xiao, Y.X.; Feng, G.L.; Zhou, H.; Qiu, S.L.; Zhao, Z.N.; Yu, Y.; et al. Studies on the evolution process of rockbursts in deep tunnels. J. Rock Mech. Geotech. Eng. 2012, 4, 289–295. [Google Scholar] [CrossRef]
- Ma, T.H.; Tang, C.A.; Tang, L.X.; Zhang, W.D.; Wang, L. Rockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping II Hydropower Station. Tunn. Undergr. Space Technol. 2015, 49, 345–368. [Google Scholar] [CrossRef]
- Bi, L.; Xie, W.; Zhao, J.J. Automatic recognition and classification of multi-channel microseismic waveform based on DCNN and SVM. Comput. Geosci. 2019, 123, 111–120. [Google Scholar] [CrossRef]
- Xiao, Y.X.; Feng, X.T.; Hudson, J.A.; Chen, B.R.; Feng, G.L.; Liu, J.P. ISRM Suggested Method for In Situ Microseismic Monitoring of the Fracturing Process in Rock Masses. Rock Mech. Rock Eng. 2016, 49, 343–369. [Google Scholar] [CrossRef]
- Dong, L.J.; Wesseloo, J.; Potvin, Y.; Li, X.B. Discriminant models of blasts and seismic events in mine seismology. Int. J. Rock Mech. Min. Sci. 2016, 86, 282–291. [Google Scholar] [CrossRef]
- Shang, X.Y.; Li, X.B.; Morales-Esteban, A.; Chen, G.H. Improving microseismic event and quarry blast classification using Artificial Neural Networks based on Principal Component Analysis. Soil Dyn. Earthq. Eng. 2017, 99, 142–149. [Google Scholar] [CrossRef]
- Derr, J.S. Discrimination of earthquakes and explosions by the Rayleigh- wave spectral ratio. Bull. Seismol. Soc. Am. 1970, 60, 1653–1668. [Google Scholar]
- Zeiler, C.; Velasco, A.A. Developing local to near-regional explosion and earthquake discriminants. Bull. Seismol. Soc. Am. 2009, 99, 24–35. [Google Scholar] [CrossRef]
- Kim, W.Y.; Aharonian, V.; Lerner-Lam, A.L.; Richards, P.G. Discrimination of earthquakes and explosions in Southern Russia using regional high-frequency three-component data from the IRIS/JSP Caucasus Network. Bull. Seismol. Soc. Am. 1997, 87, 569–588. [Google Scholar]
- Ford, S.R.; Walter, W.R. Aftershock characteristics as a means of discriminating explosions from earthquakes. Bull. Seismol. Soc. Am. 2010, 100, 364–376. [Google Scholar] [CrossRef]
- Yu, Z.; Shi, X.Z.; Zhou, J.; Rao, D.J.; Chen, X.; Dong, W.M.; Miao, X.H.; Ipangelwa, T. Feasibility of the indirect determination of blast-induced rock movement based on three new hybrid intelligent models. Eng. Comput. 2019. [Google Scholar] [CrossRef]
- Yu, Z.; Shi, X.Z.; Qiu, X.Y.; Zhou, J.; Chen, X.; Gou, Y.G. Optimization of postblast ore boundary determination using a novel sine cosine algorithm-based random forest technique and Monte Carlo simulation. Eng. Optim. 2020, 1–16. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.B.; Shi, X.Z. Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines. Saf. Sci. 2012, 50, 629–644. [Google Scholar] [CrossRef]
- Nguyen, H.; Bui, X.N. Predicting Blast-Induced Air Overpressure: A Robust Artificial Intelligence System Based on Artificial Neural Networks and Random Forest. Nat. Resour. Res. 2019, 28, 893–907. [Google Scholar] [CrossRef]
- Yu, Z.; Shi, X.Z.; Chen, X.; Zhou, J.; Qi, C.C.; Chen, Q.S.; Rao, D.J. Artificial intelligence model for studying unconfined compressive performance of fiber-reinforced cemented paste backfill. Trans. Nonferrous Met. Soc. China 2021, 31, 1087–1102. [Google Scholar] [CrossRef]
- Kortström, J.; Uski, M.; Tiira, T. Automatic classification of seismic events within a regional seismograph network. Comput. Geosci. 2016, 87, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Vallejos, J.A.; McKinnon, S.D. Logistic regression and neural network classification of seismic records. Int. J. Rock Mech. Min. Sci. 2013, 62, 86–95. [Google Scholar] [CrossRef]
- Bui Quang, P.; Gaillard, P.; Cano, Y.; Ulzibat, M. Detection and classification of seismic events with progressive multi-channel correlation and hidden Markov models. Comput. Geosci. 2015, 83, 110–119. [Google Scholar] [CrossRef]
- Malovichko, D. Discrimination of blasts in mine seismology. In Proceedings of the Sixth International Seminar on Deep and High Stress Mining, Perth, Australia, 23–30 March 2012; pp. 161–172. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.Y.; Ma, J.; Dong, L.J.; Li, X.B.; Chen, G.H.; Zhang, C.X. Classification of mine blasts and microseismic events using starting-up features in seismograms. Trans. Nonferrous Met. Soc. China 2015, 25, 3410–3420. [Google Scholar] [CrossRef]
- Dong, L.; Li, X.; Xie, G. Nonlinear methodologies for identifying seismic event and nuclear explosion using random forest, support vector machine, and naive bayes classification. Abstr. Appl. Anal. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Mendecki, A.J. Seismic Monitoring in Mines. Seism. Monit. Mines 1996. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, G.Y.; Dong, L.J.; Chen, G.H.; Zhang, C.X. A comparison of mine seismic discriminators based on features of source parameters to waveform characteristics. Shock Vib. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Shi, X.Z.; Zhou, J.; Li, E.M.; Qiu, P.Y.; Gou, Y.G. High strain rate compressive strength behavior of cemented paste backfill using split Hopkinson pressure bar. Int. J. Min. Sci. Technol. 2021, 31, 387–399. [Google Scholar] [CrossRef]
- Chen, Q.S.; Sun, S.Y.; Qi, C.C.; Liu, Y.K.; Zhou, H.B.; Zhang, Q.L. Experimental and numerical study on immobilization and leaching characteristics of fluoride from phosphogypsum based cemented paste backfill. Int. J. Miner. Metall. Mater. 2021, 28. [Google Scholar] [CrossRef]
- Bormann, P. New Manual of Seismological Observatory Practice (NMSOP); GeoForschungs Zentrum Potsdam: Potsdam, Germany, 2002. [Google Scholar]
- Rovini, E.; Maremmani, C.; Moschetti, A.; Esposito, D.; Cavallo, F. Comparative Motor Pre-clinical Assessment in Parkinson’s Disease Using Supervised Machine Learning Approaches. Ann. Biomed. Eng. 2018, 46, 2057–2068. [Google Scholar] [CrossRef]
- Adoko, A.C.; Gokceoglu, C.; Wu, L.; Zuo, Q.J. Knowledge-based and data-driven fuzzy modeling for rockburst prediction. Int. J. Rock Mech. Min. Sci. 2013, 61, 86–95. [Google Scholar] [CrossRef]
- Zhou, J.; Koopialipoor, M.; Li, E.M.; Armaghani, D.J. Prediction of rockburst risk in underground projects developing a neuro-bee intelligent system. Bull. Eng. Geol. Environ. 2020. [Google Scholar] [CrossRef]
- Xu, C.; Gordan, B.; Koopialipoor, M.; Armaghani, D.J.; Tahir, M.M.; Zhang, X. Improving Performance of Retaining Walls under Dynamic Conditions Developing an Optimized ANN Based on Ant Colony Optimization Technique. IEEE Access 2019, 7, 94692–94700. [Google Scholar] [CrossRef]
- Wu, X.; Sun, C.; Zou, T.; Xiao, H.; Wang, L.; Zhai, J. Intelligent path recognition against image noises for vision guidance of automated guided vehicles in a complex workspace. Appl. Sci. 2019, 9, 4108. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, X.; Guo, Z.; Lu, H. Developing an early-warning system for air quality prediction and assessment of cities in China. Expert Syst. Appl. 2017, 84, 102–116. [Google Scholar] [CrossRef]
- Li, C.Q.; Zhou, J.; Jahed-Armaghani, D.; Li, X.B. Stability analysis of underground mine hard rock pillars via combination of finite difference methods, neural networks, and Monte Carlo simulation techniques. Undergr. Space 2020. [Google Scholar] [CrossRef]
- Abraham, R.; Simha, J.B.; Iyengar, S.S. A comparative analysis of discretization methods for medical datamining with Naïve Bayesian classifier. In Proceedings of the 9th International Conference on Information Technology, ICIT 2006, Bhubaneswar, India, 18–21 December 2006; pp. 235–236. [Google Scholar]
- Boyles, S.; Fajardo, D.; Waller, S.T. Naive bayesian classifier for incident duration prediction. In Proceedings of the Transportation Research Board 86th Annual Meeting, Washington, DC, USA, 21–25 December 2007; p. 253. [Google Scholar]
- Domingos, P.; Pazzani, M. On the Optimality of the Simple Bayesian Classifier underZero-One Loss. Mach. Learn. 1997, 29, 103–130. [Google Scholar] [CrossRef]
- Ratanamahatana, C.; Gunopulos, D. Feature selection for the naive bayesian classifier using decision trees. Appl. Artif. Intell. 2003, 17, 475–487. [Google Scholar] [CrossRef]
- Li, B.; Li, H. Prediction of tunnel face stability using a naive Bayes classifier. Appl. Sci. 2019, 9, 4319. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Li, X.B.; Mitri, H.S. Classification of rockburst in underground projects: Comparison of ten supervised learning methods. J. Comput. Civ. Eng. 2016, 30. [Google Scholar] [CrossRef]
- Jiang, C.L.; Jiang, Z.Q.; Sun, Q. Classification of rocks surrounding tunnel using Fisher discriminant analysis method. Meitan Xuebao/J. China Coal Soc. 2012, 37, 1665–1670. [Google Scholar] [CrossRef]
- AbuZeina, D.; Al-Anzi, F.S. Employing fisher discriminant analysis for Arabic text classification. Comput. Electr. Eng. 2018, 66, 474–486. [Google Scholar] [CrossRef]
- Zhong, S.; Wen, Q.; Ge, Z. Semi-supervised Fisher discriminant analysis model for fault classification in industrial processes. Chemom. Intell. Lab. Syst. 2014, 138, 203–211. [Google Scholar] [CrossRef]
- Yu, J. Nonlinear bioprocess monitoring using multiway kernel localized fisher discriminant analysis. Ind. Eng. Chem. Res. 2011, 50, 3390–3402. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.B.; Shi, X.Z.; Wei, W.; Wu, B.B. Predicting pillar stability for underground mine using Fisher discriminant analysis and SVM methods. Trans. Nonferrous Met. Soc. China 2011, 21, 2734–2743. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, W.; Li, Y.; Zhang, S.; Zhang, Z. Multilayer probability extreme learning machine for device-free localization. Neurocomputing 2020, 396, 383–393. [Google Scholar] [CrossRef]
- Figueiredo, E.M.N.; Ludermir, T.B. Investigating the use of alternative topologies on performance of the PSO-ELM. Neurocomputing 2014, 127, 4–12. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. A New Optimizer Using Particle Swarm Theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995. [Google Scholar]
- Armaghani, D.J.; Koopialipoor, M.; Marto, A.; Yagiz, S. Application of several optimization techniques for estimating TBM advance rate in granitic rocks. J. Rock Mech. Geotech. Eng. 2019, 11, 779–789. [Google Scholar] [CrossRef]
- Koopialipoor, M.; Jahed-Armaghani, D.; Hedayat, A.; Marto, A.; Gordan, B. Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions. Soft Comput. 2019, 23, 5913–5929. [Google Scholar] [CrossRef]
- Hasanipanah, M.; Naderi, R.; Kashir, J.; Noorani, S.A.; Zeynali-Aaq-Qaleh, A. Prediction of blast-produced ground vibration using particle swarm optimization. Eng. Comput. 2017, 33, 173–179. [Google Scholar] [CrossRef]
- Cai, W.H.; Yang, J.J.; Yu, Y.D.; Song, Y.Y.; Zhou, T.; Qin, J. PSO-ELM: A Hybrid Learning Model for Short-Term Traffic Flow Forecasting. IEEE Access 2020, 8, 6505–6514. [Google Scholar] [CrossRef]
- Yuhui, S.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the IEEE International Conference on IEEE World Congress on Computational Intelligence, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73. [Google Scholar]
- Hasanipanah, M.; Noorian-Bidgoli, M.; Jahed Armaghani, D.; Khamesi, H. Feasibility of PSO-ANN model for predicting surface settlement caused by tunneling. Eng. Comput. 2016, 32, 705–715. [Google Scholar] [CrossRef]
- Caudill, M. Neural Networks Primer Part III; Al Expert: Lawrence, KS, USA, 1988; pp. 53–59. [Google Scholar]
- Zorlu, K.; Gokceoglu, C.; Ocakoglu, F.; Nefeslioglu, H.A.; Acikalin, S. Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng. Geol. 2008, 96, 141–158. [Google Scholar] [CrossRef]
- Asencio-Cortés, G.; Martínez-Álvarez, F.; Troncoso, A.; Morales-Esteban, A. Medium–large earthquake magnitude prediction in Tokyo with artificial neural networks. Neural Comput. Appl. 2017, 28, 1043–1055. [Google Scholar] [CrossRef]
True | Predict | |
---|---|---|
Positive Example | Negative Example | |
Positive example | True positive (TP) | False negative (FN) |
Negative example | False positive (FP) | True negative (TN) |
Model | Dataset | Results | Score | Total Score | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ACC | PPV | NPV | Sn | Sp | MCC | ACC | PPV | NPV | Sn | Sp | MCC | |||
BPNN | Training | 0.9672 | 0.9687 | 0.9657 | 0.9656 | 0.9688 | 0.9344 | 4 | 4 | 4 | 4 | 4 | 4 | 46 |
Testing | 0.9500 | 0.9500 | 0.9500 | 0.9500 | 0.9500 | 0.9000 | 4 | 4 | 3 | 3 | 4 | 4 | ||
NBC | Training | 0.7688 | 0.6933 | 0.9410 | 0.9641 | 0.5734 | 0.5839 | 1 | 1 | 2 | 3 | 1 | 1 | 21 |
Testing | 0.8031 | 0.7215 | 0.9802 | 0.9875 | 0.6188 | 0.6522 | 1 | 1 | 4 | 4 | 1 | 1 | ||
FDA | Training | 0.9156 | 0.9080 | 0.9236 | 0.9250 | 0.9063 | 0.8314 | 2 | 2 | 1 | 1 | 2 | 2 | 22 |
Testing | 0.9000 | 0.9000 | 0.9000 | 0.9000 | 0.9000 | 0.8000 | 2 | 2 | 2 | 2 | 2 | 2 | ||
ELM | Training | 0.9492 | 0.9528 | 0.9457 | 0.9453 | 0.9531 | 0.8985 | 3 | 3 | 3 | 2 | 3 | 3 | 31 |
Testing | 0.9031 | 0.9108 | 0.8957 | 0.8938 | 0.9125 | 0.8064 | 3 | 3 | 1 | 1 | 3 | 3 | ||
PSO-ELM | Training | 0.9844 | 0.9890 | 0.9799 | 0.9797 | 0.9891 | 0.9688 | 5 | 5 | 5 | 5 | 5 | 5 | 60 |
Testing | 0.9969 | 1.0000 | 0.9938 | 0.9938 | 1.0000 | 0.9938 | 5 | 5 | 5 | 5 | 5 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, D.; Shi, X.; Zhou, J.; Yu, Z.; Gou, Y.; Dong, Z.; Zhang, J. An Expert Artificial Intelligence Model for Discriminating Microseismic Events and Mine Blasts. Appl. Sci. 2021, 11, 6474. https://doi.org/10.3390/app11146474
Rao D, Shi X, Zhou J, Yu Z, Gou Y, Dong Z, Zhang J. An Expert Artificial Intelligence Model for Discriminating Microseismic Events and Mine Blasts. Applied Sciences. 2021; 11(14):6474. https://doi.org/10.3390/app11146474
Chicago/Turabian StyleRao, Dijun, Xiuzhi Shi, Jian Zhou, Zhi Yu, Yonggang Gou, Zezhen Dong, and Jinzhong Zhang. 2021. "An Expert Artificial Intelligence Model for Discriminating Microseismic Events and Mine Blasts" Applied Sciences 11, no. 14: 6474. https://doi.org/10.3390/app11146474
APA StyleRao, D., Shi, X., Zhou, J., Yu, Z., Gou, Y., Dong, Z., & Zhang, J. (2021). An Expert Artificial Intelligence Model for Discriminating Microseismic Events and Mine Blasts. Applied Sciences, 11(14), 6474. https://doi.org/10.3390/app11146474