Experimental Study of Explosion Mitigation by Deployed Metal Combined with Water Curtain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Explosive Driven Shock Tube
2.3. Imaging for EDST
2.4. Free Field
3. Results
3.1. Explosive Driven Shock Tube
3.2. Free Field
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kingery, C.; Pearson, R.; Coulter, G. Shock Wave Attenuation by Perforated Plates with Various Hole Sizes. USA Ballistic Research Laboratory Memorandum Report; 1977; n° 2757, Defense Technical Information Center. Available online: https://apps.dtic.mil/sti/citations/ADA041854 (accessed on 18 June 2021).
- Britan, A.; Karpov, A.V.; Vasilev, E.I.; Igra, O.; Ben-Dor, G.; Shapiro, E. Experimental and numerical study of shock wave interaction with perforated plate. J. Fluids Mech. 2004, 126, 399–409. [Google Scholar] [CrossRef]
- Britan, A.; Igra, O.; Ben-Dor, G.; Shapiro, E. Shock wave attenuation by grids and orifice plates. Shock Waves 2006, 16, 1–15. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, L.; Fang, Q.; Mao, Y.-M. Performance based investigation on the construction of anti-blast water wall. Int. J. Impact Eng. 2015, 81, 17–33. [Google Scholar] [CrossRef]
- Xiao, W.; Andrae, A.; Gebbeken, N. Experimental investigations of shock wave attenuation performance using protective barriers made of woven wire mesh. Int. J. Impact Eng. 2019, 131, 209–221. [Google Scholar] [CrossRef]
- Gebbeken, N.; Rüdiger, L.; Warnstedt, P. Explosion mitigation by water mist-ring mesh with water curtain. In Proceedings of the 25th MilitaryAspects of Blast and Shock Conference, Hague, The Netherlands, 23–25 September 2018. [Google Scholar]
- Schunck, T.; Bastide, M.; Eckenfels, D.; Legendre, J.-F. Explosion mitigation by metal grid with water curtain. Shock Waves 2021. [CrossRef]
- Seeraj, S. Shock Wave Interactions with Porous Plates. Master’s Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2007. [Google Scholar]
- Louar, M.A.; Belkassem, B.; Ousji, H.; Spranghers, K.; Kakogiannis, D.; Pyl, L.; Vantomme, J. Explosive driven shock tube loading of aluminium plates: Experimental study. Int. J. Impact Eng. 2015, 86, 111–123. [Google Scholar] [CrossRef]
- Ousji, H.; Belkassem, B.; Louar, M.A.; Reymen, B.; Martino, J.; Lecompte, D.; Pyl, L.; Vantomme, J. Air-blast response of sacrificial cladding using low density foams: Experimental and analytical approach. Int. J. Mech. Sci. 2017, 128–129, 459–474. [Google Scholar] [CrossRef]
- Stojko, S.; Freundt, J.; Anderson, J.G.; Delaney, T. Experimental characterization of the interaction of blast waves from multiple high explosive charges. In Proceedings of the 25th MilitaryAspects of Blast and Shock Conference, Hague, The Netherlands, 23–25 September 2018. [Google Scholar]
- Kingery, C.N.; Bulmash, G. Technical Report ARBRL-TR-02555: Air Blast Parameters from TNT Spherical Air Burst and HEMISPHERICAL Burst; AD-B082 713; U.S. Army Ballistic Research Laboratory: Aberdeen Proving Ground, MD, USA, 1984. [Google Scholar]
- Ram, O.; Ben-Dor, G.; Sadot, O. On the pressure buildup behind an array of perforated plates impinged by a normal shock wave. Exp. Therm. Fluid Sci. 2018, 92, 211–221. [Google Scholar] [CrossRef]
Type of Plate | Number of Plates | Overpressure (Bar) | Attenuation (%) | Impulse (Bar·s) | Attenuation (%) |
---|---|---|---|---|---|
no plate | - | 22.82 | - | 0.0032 | - |
no plate | - | 19.48 | - | 0.0040 | - |
no plate | - | 15.61 | - | 0.0035 | - |
no plate | - | 15.65 | - | 0.0037 | - |
no plate | - | 15.73 | - | 0.0034 | - |
expanded metal | 1 | 9.36 | 48 | 0.0011 | 70 |
expanded metal | 1 | 7.71 | 57 | 0.0012 | 65 |
expanded metal | 1 | 10.89 | 39 | 0.0013 | 63 |
expanded metal | 1 | 10.30 | 42 | 0.0015 | 59 |
expanded metal | 2 | 4.46 | 75 | 0.0003 | 93 |
expanded metal | 2 | 4.50 | 75 | 0.0005 | 87 |
expanded metal | 2 | 5.86 | 67 | 0.0005 | 87 |
expanded metal | 2 | 4.46 | 75 | 0.0003 | 93 |
Experiment Type | Overpressure Control (Bar) | Overpressure Wall (Bar) | Attenuation (%) | Overpressure Ground 1 (Bar) | Overpressure Ground 2 (Bar) |
---|---|---|---|---|---|
no plate | 0.90 | 2.53 | - | 3.20 | - |
no plate | 0.89 | 2.61 | - | 3.22 | - |
no plate | 0.89 | 2.70 | - | - | - |
2 expanded metal | 0.90 | 1.05 | 60 | 3.08 | 2.12 |
2 expanded metal | 0.86 | 0.88 | 66 | 2.26 | 1.96 |
2 expanded metal | 0.89 | 0.99 | 62 | 3.31 | 2.14 |
2 expanded metal & water | 0.89 | 0.90 | 66 | 1.88 | 1.89 |
2 expanded metal & water | 0.78 | 0.68 | 74 | 3.17 | 1.83 |
1 expanded metal | 0.89 | 1.42 | 46 | 3.16 | - |
1 expanded metal | 0.82 | 1.78 | 32 | 3.52 | - |
1 expanded metal | 0.84 | 1.40 | 47 | 3.62 | - |
1 expanded metal & water | 0.80 | 0.82 | 69 | 2.80 | - |
1 expanded metal & water | 0.76 | 0.75 | 71 | 3.08 | - |
Experiment Type | Impulse Control (Bar·s) | Impulse Wall (Bar·s) | Attenuation (%) | Impulse Ground 1 (Bar·s) | Impulse Ground 2 (Bar·s) |
---|---|---|---|---|---|
no plate | 0.00103 | 0.00247 | - | 0.001427 | - |
no plate | 0.00105 | 0.00275 | - | 0.001388 | - |
no plate | 0.00097 | 0.00261 | - | - | - |
2 expanded metal | 0.00108 | 0.00105 | 60 | 0.001384 | 0.002338 |
2 expanded metal | 0.00108 | 0.00105 | 60 | 0.001287 | 0.002258 |
2 expanded metal | 0.00105 | 0.00095 | 64 | 0.001127 | 0.001849 |
2 expanded metal & water | 0.00104 | 0.00077 | 71 | 0.001312 | 0.002546 |
2 expanded metal & water | 0.00098 | 0.00071 | 73 | 0.001143 | 0.002234 |
1 expanded metal | 0.00107 | 0.00155 | 41 | 0.001411 | - |
1 expanded metal | 0.00100 | 0.00144 | 45 | 0.001395 | - |
1 expanded metal | 0.00096 | 0.001437 | 45 | 0.001289 | - |
1 expanded metal & water | 0.00094 | 0.00108 | 58 | 0.001418 | - |
1 expanded metal & water | 0.00093 | 0.00110 | 58 | 0.001402 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schunck, T.; Eckenfels, D. Experimental Study of Explosion Mitigation by Deployed Metal Combined with Water Curtain. Appl. Sci. 2021, 11, 6539. https://doi.org/10.3390/app11146539
Schunck T, Eckenfels D. Experimental Study of Explosion Mitigation by Deployed Metal Combined with Water Curtain. Applied Sciences. 2021; 11(14):6539. https://doi.org/10.3390/app11146539
Chicago/Turabian StyleSchunck, Thérèse, and Dominique Eckenfels. 2021. "Experimental Study of Explosion Mitigation by Deployed Metal Combined with Water Curtain" Applied Sciences 11, no. 14: 6539. https://doi.org/10.3390/app11146539
APA StyleSchunck, T., & Eckenfels, D. (2021). Experimental Study of Explosion Mitigation by Deployed Metal Combined with Water Curtain. Applied Sciences, 11(14), 6539. https://doi.org/10.3390/app11146539