Study on the Effects of Ultrasonic Agitation on CO2 Adsorption Efficiency Improvement of Cement Paste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Reconstruction of the CO2 Absorption Device
2.3. Fresh Cement Paste Preparation for CO2 Absorption
2.4. Determination of the Optimum Ultrasonic Frequency
2.5. Experimental Procedure
2.5.1. Specimen Grouping
2.5.2. Fluidity of Cement Paste after CO2 Absorption
2.5.3. Pore structure of Hardened Cement Paste after CO2 Absorption
2.5.4. Mechanical Properties of Hardened Cement Paste after CO2 Absorption
2.5.5. Characterization of the Hydration Products in Cement Paste after CO2 Absorption
3. Results
3.1. Effects of Ultrasonic Frequency on the CO2 Ultimate Absorption Amount and AR
3.1.1. Effects of Ultrasonic Frequency on the CO2 Ultimate Absorption Amount
3.1.2. Effects of Ultrasonic Vibration on CO2 AR
3.2. Effects of Ultrasonic Vibration on the Fluidity of Cement Paste after CO2 Absorption
3.2.1. Divergence of Cement Paste after CO2 Absorption
3.2.2. Effects of Ultrasonic Vibration on the Fluidity of Cement Paste after CO2 Absorption
3.3. Effects of Ultrasonic Vibration on Pore Distribution and Porosity of Hardened Cement Paste after CO2 Absorption
3.3.1. The Most Available Geometric Diameter of Pore Distribution
3.3.2. The Most Available Geometric Diameter of Pore Distribution
3.3.3. Porosity
3.3.4. Mean Pore Size
3.4. Effects of Ultrasonic Vibration on the Mechanical Properties of Cement-Based Materials after CO2 Absorption
3.4.1. Compressive Strength
3.4.2. Compressive Strength
4. Microstructural Analysis of Cement Paste after CO2 Absorption under Ultrasonic Vibration
4.1. Mechanical Agitation Molding
4.2. Ultrasonic Vibrating Agitation Moulding
4.3. Energy Dispersive Spectrum (EDS) Analysis
5. Mechanism Analysis
5.1. Hydration Mechanism of Cement Paste under Mechanical Agitation
5.1.1. Cement Paste without CO2 Absorption
5.1.2. Cement Paste after CO2 Absorption under Mechanical Agitation
5.2. Hydration Mechanism of Cement Paste under Ultrasonic Agitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Damtoft, J.S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E.M. Sustainable development and climate change initiatives. Cem. Concr. Res. 2008, 38, 115–127. [Google Scholar] [CrossRef]
- Barcelo, L.; Kline, J.; Walenta, G.; Gartner, E. Cement and carbon emissions. Mater. Struct. 2014, 47, 1055–1065. [Google Scholar] [CrossRef]
- Shtepenko, O.; Hills, C.; Brough, A.; Thomas, M. The effect of carbon dioxide on beta-dicalcium silicate and Portland cement. Chem. Eng. J. 2006, 118, 107–118. [Google Scholar] [CrossRef]
- Jarvis, K.; Carpenter, R.W.; Windman, T.; Kim, Y.; Nunez, R.; Alawneh, F. Reaction Mechanisms for Enhancing Mineral Sequestration of CO2. Environ. Sci. Technol. 2009, 43, 6314–6319. [Google Scholar] [CrossRef] [PubMed]
- Sabbie, A.M.; Vanderley, M.J.; Sergio, A.P.; Arpad, H. Carbon dioxide reduction potential in the global cement industry by 2050. Cem. Concr. Res. 2018, 114, 115–124. [Google Scholar] [CrossRef]
- Costa, B.; Freitas, J.; Santos, P.; Melo, D.; Oliveira, Y. Effects of carbon dioxide in Portland cement: A relation between static sedimentation and carbonation. Constr. Build. Mater. 2017, 150, 450–458. [Google Scholar] [CrossRef]
- Fernandezbertos, M.; Simons, S.; Hills, C.; Carey, P. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J. Hazard. Mater. 2004, 112, 193–205. [Google Scholar] [CrossRef]
- Shi, C.; Wu, Y. Studies on some factors affecting CO2 curing of light-weight concrete products. Resour. Conserv. Recycl. 2008, 52, 1087–1092. [Google Scholar] [CrossRef]
- Ming, F.; Ming, D. Influence of Conventional Dispersed Nano-CaCO3 on Performance of Concrete. J. Highw. Transp. Res. Dev. 2019, 36, 25–30. [Google Scholar]
- Markus, S.; Johann, P. A TEM study on the very early crystallization of C-S-H in the presence of polycarboxylate superplasticizers: Transformation from initial C-S-H globules to nanofoils. Cem. Concr. Res. 2018, 106, 33–39. [Google Scholar] [CrossRef]
- Alireza, R.; Papadakis, G.V.; Hamid, N. Rate of carbonation in cement modified base course material. Constr. Build. Mater. 2017, 15, 646–652. [Google Scholar] [CrossRef]
- Monkman, S.; MacDonald, M. On carbon dioxide utilization as a means to improve the sustainability of ready-mixed concrete. J. Clean. Prod. 2017, 167, 365–375. [Google Scholar] [CrossRef]
- Beitzel, H.; Charonnat, Y.; Beitzel, M. Assessment and classification of performance mixers. Mater. Struct. 2003, 36, 250–264. [Google Scholar] [CrossRef]
- Vandanjon, P.O.; Larrard, F.D.; Dehousse, B.; Villain, G.; Maillot, R.; Laplante, P. Homogenisation of concrete in a batch plant: The influence ofmixing time and method on the introduction of mineral admixtures. Mag. Concr. Res. 2003, 55, 112–137. [Google Scholar] [CrossRef]
- Izadifar, Z.; Babyn, P.; Chapman, D. Mechanical And biological Effects of ultrasound: A review of present knowledge. Ultrasound Med. Biol. 2017, 43, 1085–1104. [Google Scholar] [CrossRef] [Green Version]
- Vaitkevicius, V.; Serelis, E.; Kersevicius, V. Effect of ultra-sonic activation on early hydration process in3D concrete printing technology. Constr. Build. Mater. 2018, 169, 354–363. [Google Scholar] [CrossRef]
- Hemalatha, T.; Sundar KR, R.; Murthy, A.R.; Iyer, N.R. Influence of mixing protocol on freshand hardened properties of self-compacting concrete. Constr. Build. Mater. 2015, 98, 119–127. [Google Scholar] [CrossRef]
- Yao, Y.; Pan, Y.; Liu, S. Power Ultrasound and Its Applications: A State-of-the-art Review. Ultrason. Sonochem. 2020, 104722. [Google Scholar] [CrossRef]
- Wu, X.F.; Zhang, G.A.; Wu, F.F. Microstructural Characteristics of Mg2Si/Al Composite under different superheat and electromagnetic stirring. Rare Met. Mater. Eng. 2015, 44, 576–580. [Google Scholar]
- Bia, G.Z.; Yu, Z.F.; Liu, Z. Stirring Time on Solidification Microstructure and Mechanical Properties of In-situ Mg2 Si/Al composit. Nonferrous Met. Mater. Eng. 2016, 37, 14–20. [Google Scholar]
- Liu, L.; Ji, Y.; Gao, F.; Zhang, L.; Zhang, Z.; Liu, X. Study on high-efficiency CO2 absorption by fresh cement paste. Constr. Build. Mater. 2021, 270. [Google Scholar] [CrossRef]
- Gao, H.X.; Wang, X.H.; Zhang, Y.H. Comparative Analysis of SiC Particles Reinforced Aluminum Matrix Composites Fabricated by Mechanical Stirring and by Ultrasonic Stirring. Spec. Cast. Nonferrous Alloy 2013, 33, 669–672. [Google Scholar]
- Xiong, G.; Wang, C.; Zhou, S.; Jia, X.; Luo, W.; Liu, J.; Peng, X. Preparation of high strength lightweight aggregate concrete with the vibration mixing process. Constr. Build. Mater. 2019, 229, 116936. [Google Scholar] [CrossRef]
- Aileen, V.; Kay, W. Evaluation of resonance acoustic mixing technology using ultra highperformance concrete. Constr. Build. Mater. 2018, 164, 716–730. [Google Scholar] [CrossRef]
- Kamal, H.K.; Weina, M.; Kavya, V.; Teng, L. Rheological properties ofultra-high-performance concrete—An overview. Cem. Concr. Res. 2019, 124, 105828. [Google Scholar] [CrossRef]
- GB/T17671-1999. Method of Testing Cements-Determination of Strength; Standards Press of China: Beijing, China, 1999. [Google Scholar]
- Devi, S.C.; Khan, R.A. Effect of graphene oxide on mechanical and durability performance of concrete. J. Build. Eng. 2020, 27, 101007. [Google Scholar] [CrossRef]
- Chang, G.; Liang, H.; Libo, Y. Mechanical properties of recycled aggregate concrete modified by nano-particles. Constr. Build. Mater. 2020, 118030. [Google Scholar] [CrossRef]
- Ding, J.W. Effects of the replacement ratio of carbonized recycled fine aggregate on the compressive strength of recycled concrete. J. Fujian I Technol. 2019, 17, 13–16. [Google Scholar]
- Chan, X.Y.; Lu, A.H.; Hu, S.C.; Wang, Y.R.; Zhang, L.; Jiang, R.F.; Zhao, Z.H. Influence of porosity on mechanical properties and energy dissipation of concrete. New Build Mater. 2019, 046, 12–15. [Google Scholar]
- Li, C.; Nie, J.; Feng, Z.; Deng, S.; Lei, Z.; Zhang, Y. Effect of Vibratory Mixing on the Construction and Mechanical Properties of Ultra-High Performance Concrete. Silic. Bull. 2019, 38, 2586–2594. [Google Scholar] [CrossRef]
- Gaëtan, R.; Véronique, B.G.; Olivier, P.; Bruno, G.; Fabrice, B. Heterogeneous porosity distribution in Portlandcement exposed to CO2-rich fluids. Cem. Concr. Res. 2008, 38, 1038–1048. [Google Scholar] [CrossRef]
- Cha, X.X.; Wang, H.Y.; Feng, G.L. Effects of supercritical carbonation on the property and pore structure of cement-based materials. J. Harbin I Technol. 2014, 46, 52–57. [Google Scholar]
- Wang, Z.P.; Yang, H.Y.; Zhao, Y.T.; Xu, L.L. Effect of porosity and moisture content on the permeability coefficient of concrete. Concrete 2019, 6, 8–12. [Google Scholar]
- Luque, M.D.; Priego-Capote, F. Ultrasound-assisted crytallization (sonocrystallization). Ultrason. Sonochem. 2007, 14, 717–724. [Google Scholar] [CrossRef]
- Dietemann, M.; Baillon, F.; Espitalier, F. Amorphous magnesium silicate ultrasound-assisted precipitationin a mixing system: Population balance modelling and crystallization rates identification. Powder Technol. 2019, 356, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.S.; Rouxel, D.; Vincent, B. Dispersion of nanoparticles: From organic solvents to polymer solutions. Ultrason. Sonochem. 2014, 21, 149–153. [Google Scholar] [CrossRef]
- Ganjian, E.; Ehsani, A.; Mason, T.J.; Tyrer, M. Application of power ultrasound to cementitious materials:Advances, issues and perspectives. Mater. Des. 2018, 160, 503–513. [Google Scholar] [CrossRef]
- Richards, W.T.; Loomis, A.L. The chemical effects of high frequency sound waves I. a preliminary survey. J. Am. Chem. Soc. 1927, 49, 3086–3100. [Google Scholar] [CrossRef]
- Harvey, E.N.; Loomis, A.L. The destruction of luminous bacteria by high frequency sound waves. J. Bacteriol 1929, 17, 373–376. [Google Scholar] [CrossRef] [Green Version]
- Newman, A.P.; Lorimer, J.P.; Mason, T.J.; Hunt, K.R. An investigation into the ultrasonic treatment of polluted solids. UItrason. Sonochem. 1997, 4, 153–156. [Google Scholar] [CrossRef]
Chemical Composition | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | f-CaO | Loss |
---|---|---|---|---|---|---|---|
Content (%) | 22.1 | 5.34 | 3.44 | 65.33 | 2.11 | 0.39 | 0.13 |
Components | C3S | C2S | C3A | C4AF |
---|---|---|---|---|
Proportions (%) | 54.04 | 22.84 | 8.39 | 10.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Ji, Y.; Ma, Z.; Gao, F.; Xu, Z. Study on the Effects of Ultrasonic Agitation on CO2 Adsorption Efficiency Improvement of Cement Paste. Appl. Sci. 2021, 11, 6877. https://doi.org/10.3390/app11156877
Liu L, Ji Y, Ma Z, Gao F, Xu Z. Study on the Effects of Ultrasonic Agitation on CO2 Adsorption Efficiency Improvement of Cement Paste. Applied Sciences. 2021; 11(15):6877. https://doi.org/10.3390/app11156877
Chicago/Turabian StyleLiu, Lili, Yongsheng Ji, Zhanguo Ma, Furong Gao, and Zhishan Xu. 2021. "Study on the Effects of Ultrasonic Agitation on CO2 Adsorption Efficiency Improvement of Cement Paste" Applied Sciences 11, no. 15: 6877. https://doi.org/10.3390/app11156877
APA StyleLiu, L., Ji, Y., Ma, Z., Gao, F., & Xu, Z. (2021). Study on the Effects of Ultrasonic Agitation on CO2 Adsorption Efficiency Improvement of Cement Paste. Applied Sciences, 11(15), 6877. https://doi.org/10.3390/app11156877